Methodology for creating a novel cardiac arrest registry using the Trinetx electronic health record database

IF 2.4 Q3 CRITICAL CARE MEDICINE
Ryan Huebinger , Ryan A. Coute , Larissa Myaskovsky , Cameron Crandall , Ethan Abbott , Keith E. Kocher , Aditya C Shekhar , Benjamin S. Abella
{"title":"Methodology for creating a novel cardiac arrest registry using the Trinetx electronic health record database","authors":"Ryan Huebinger ,&nbsp;Ryan A. Coute ,&nbsp;Larissa Myaskovsky ,&nbsp;Cameron Crandall ,&nbsp;Ethan Abbott ,&nbsp;Keith E. Kocher ,&nbsp;Aditya C Shekhar ,&nbsp;Benjamin S. Abella","doi":"10.1016/j.resplu.2025.101102","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Care in the hospital, post-arrest care, is a crucial component of out-of-hospital cardiac arrest (OHCA) management, but current OHCA databases contain limited post-arrest care data. To address this, we present the methodology for assembling a multicenter, real-world post-arrest care research registry using the Trinetx database.</div></div><div><h3>Methods</h3><div>We queried the Trinetx research database (01/01/2000–02/19/2025), a federated database of electronic health record data from over 100 healthcare organisations in the US and internationally, to identify OHCAs from ICD codes for cardiac arrest related to emergency department (ED) visits. To define our cohort of patients eligible to receive post-arrest care, we identified OHCAs that survived to admission based on having a temporally associated inpatient encounter (based on encounter type/Current Procedure Terminology codes) or an ED visit lasting &gt;24 h. We defined survival to discharge as 1) having an encounter after the hospitalisation and 2) having a death date after the end of the hospitalisation. We report patient characteristics and the number of clinical variables available in each data table for the cohort.</div></div><div><h3>Results</h3><div>We identified 222,868 OHCAs and included 88,753 patients (39.8%) who survived to admission. The median age was 65, 60.3% were male, and 59.8% were White. Survival to discharge rate was 48.5%. The database contained 188,038,385 clinical data points: 40,868,707 vital signs, 52,145,594 labs, 17,781,035 procedures, 72,575,389 medication administrations, and 4,667,660 diagnoses.</div></div><div><h3>Conclusion</h3><div>Using Trinetx real-world data, it is possible to create a multicentre, OHCA post-arrest care database with a substantial number of clinical variables, enabling novel post-arrest care research.</div></div>","PeriodicalId":94192,"journal":{"name":"Resuscitation plus","volume":"26 ","pages":"Article 101102"},"PeriodicalIF":2.4000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resuscitation plus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666520425002395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Care in the hospital, post-arrest care, is a crucial component of out-of-hospital cardiac arrest (OHCA) management, but current OHCA databases contain limited post-arrest care data. To address this, we present the methodology for assembling a multicenter, real-world post-arrest care research registry using the Trinetx database.

Methods

We queried the Trinetx research database (01/01/2000–02/19/2025), a federated database of electronic health record data from over 100 healthcare organisations in the US and internationally, to identify OHCAs from ICD codes for cardiac arrest related to emergency department (ED) visits. To define our cohort of patients eligible to receive post-arrest care, we identified OHCAs that survived to admission based on having a temporally associated inpatient encounter (based on encounter type/Current Procedure Terminology codes) or an ED visit lasting >24 h. We defined survival to discharge as 1) having an encounter after the hospitalisation and 2) having a death date after the end of the hospitalisation. We report patient characteristics and the number of clinical variables available in each data table for the cohort.

Results

We identified 222,868 OHCAs and included 88,753 patients (39.8%) who survived to admission. The median age was 65, 60.3% were male, and 59.8% were White. Survival to discharge rate was 48.5%. The database contained 188,038,385 clinical data points: 40,868,707 vital signs, 52,145,594 labs, 17,781,035 procedures, 72,575,389 medication administrations, and 4,667,660 diagnoses.

Conclusion

Using Trinetx real-world data, it is possible to create a multicentre, OHCA post-arrest care database with a substantial number of clinical variables, enabling novel post-arrest care research.
使用Trinetx电子健康记录数据库创建新型心脏骤停登记处的方法
医院内的护理,即骤停后护理,是院外心脏骤停(OHCA)管理的重要组成部分,但目前的OHCA数据库包含的骤停后护理数据有限。为了解决这个问题,我们提出了使用Trinetx数据库组装多中心,真实世界的逮捕后护理研究登记处的方法。方法我们查询Trinetx研究数据库(2000年1月1日- 2025年2月19日),这是一个来自美国和国际上100多家医疗机构的电子健康记录数据的联邦数据库,从ICD代码中识别与急诊科(ED)就诊相关的心脏骤停的ohca。为了确定有资格接受心脏骤停后护理的患者队列,我们确定了存活至入院的ohca,其基础是有暂时相关的住院遭遇(基于遭遇类型/当前程序术语代码)或持续24小时的急诊科就诊。我们将存活至出院定义为1)住院后遭遇,2)住院结束后死亡日期。我们在每个队列数据表中报告患者特征和可用临床变量的数量。结果共发现222,868例ohca,其中88,753例(39.8%)存活至入院。中位年龄65岁,男性占60.3%,白人占59.8%。生存率为48.5%。该数据库包含188,038,385个临床数据点:40,868,707个生命体征,52,145,594个实验室,17,781,035个手术,72,575,389个药物管理和4,667,660个诊断。使用Trinetx真实世界数据,可以创建一个包含大量临床变量的多中心OHCA骤停后护理数据库,从而实现新的骤停后护理研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Resuscitation plus
Resuscitation plus Critical Care and Intensive Care Medicine, Emergency Medicine
CiteScore
3.00
自引率
0.00%
发文量
0
审稿时长
52 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信