A hybrid approach for predicting fatigue life of fiber-reinforced polypropylene composite (PPGF40): Integrating micromechanical modelling

IF 7 Q2 MATERIALS SCIENCE, COMPOSITES
Mohammadali Shirinbayan , Samia Nouira , Jihed Zghal , Joseph Fitoussi
{"title":"A hybrid approach for predicting fatigue life of fiber-reinforced polypropylene composite (PPGF40): Integrating micromechanical modelling","authors":"Mohammadali Shirinbayan ,&nbsp;Samia Nouira ,&nbsp;Jihed Zghal ,&nbsp;Joseph Fitoussi","doi":"10.1016/j.jcomc.2025.100660","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a hybrid approach for predicting the fatigue life of PPGF40. The approach combines micromechanical modeling with empirical techniques, based on an intrinsic relationship. Micromechanical modeling is used to analyze the material's monotonic behavior. The study presents a micromechanical model, based on Mori and Tanaka's approach, for simulating damage at the fiber-matrix interface. The model incorporates a local criterion and linearizes the plastic behavior of the matrix using the secant modulus method. The model parameters are identified by comparing them with experimental stiffness reduction results, and S-N curves for different modeled orientations (0°, 45°, and 90°) are presented. The study concludes by establishing the Tsai-Wu fatigue failure criterion based on hybrid modeling results, demonstrating its usefulness in designing structures such as tailgates. The versatility of the micromechanical model extends to other microstructures upon validation. This methodology provides a framework for linking process, microstructure, and properties, and can be coupled in the future with microstructure prediction tools, such as Moldflow, to support fatigue optimization in PPGF40 and similar materials.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"18 ","pages":"Article 100660"},"PeriodicalIF":7.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682025001021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a hybrid approach for predicting the fatigue life of PPGF40. The approach combines micromechanical modeling with empirical techniques, based on an intrinsic relationship. Micromechanical modeling is used to analyze the material's monotonic behavior. The study presents a micromechanical model, based on Mori and Tanaka's approach, for simulating damage at the fiber-matrix interface. The model incorporates a local criterion and linearizes the plastic behavior of the matrix using the secant modulus method. The model parameters are identified by comparing them with experimental stiffness reduction results, and S-N curves for different modeled orientations (0°, 45°, and 90°) are presented. The study concludes by establishing the Tsai-Wu fatigue failure criterion based on hybrid modeling results, demonstrating its usefulness in designing structures such as tailgates. The versatility of the micromechanical model extends to other microstructures upon validation. This methodology provides a framework for linking process, microstructure, and properties, and can be coupled in the future with microstructure prediction tools, such as Moldflow, to support fatigue optimization in PPGF40 and similar materials.
纤维增强聚丙烯复合材料(PPGF40)疲劳寿命预测的混合方法:集成微观力学模型
提出了一种预测PPGF40疲劳寿命的混合方法。该方法结合了基于内在关系的微观力学建模和经验技术。采用微观力学模型分析材料的单调行为。该研究提出了一个基于Mori和Tanaka方法的微观力学模型,用于模拟纤维-基质界面的损伤。该模型采用局部准则,并采用割线模量法线性化了矩阵的塑性行为。通过与试验刚度折减结果的对比,确定了模型参数,并给出了不同建模方向(0°、45°和90°)下的S-N曲线。最后,在混合模型的基础上建立了Tsai-Wu疲劳破坏准则,证明了其在尾板等结构设计中的有效性。微力学模型的多功能性在验证后扩展到其他微观结构。该方法为连接工艺、微观结构和性能提供了一个框架,并且可以在未来与微观结构预测工具(如Moldflow)相结合,以支持PPGF40和类似材料的疲劳优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信