{"title":"Failure modes and energy absorption in Glass Reinforced aluminum (GLARE) hybrid laminates subjected to three-point bending","authors":"Shreyas Anand, Nachiket Dighe, Pranshul Gupta, René Alderliesten, Saullo G.P. Castro","doi":"10.1016/j.jcomc.2025.100651","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates 3-point bending failure of five different types of GLARE laminates (2A, 2B, 3, 4A and 4B). 73 configurations (419 specimens), with different stacking sequences and aluminum layer thicknesses are tested. Failure mechanisms, effect of stacking sequence, effect of aluminum rolling direction, effect of displacement rate and energy absorption are analyzed. Configurations with predominantly 0°glass fiber layers fail with delamination as the major failure mode, while configurations with predominantly 90°glass fiber layers fail with central cracking as the major failure mode. GLARE 3, with 1:1 ratio of 0°and 90°fibers, fail with an equal mix of delamination and central cracking. A semi-analytical framework that can be used to predict the force versus displacement curve for central cracking failure is proposed and validated.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"18 ","pages":"Article 100651"},"PeriodicalIF":7.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682025000933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates 3-point bending failure of five different types of GLARE laminates (2A, 2B, 3, 4A and 4B). 73 configurations (419 specimens), with different stacking sequences and aluminum layer thicknesses are tested. Failure mechanisms, effect of stacking sequence, effect of aluminum rolling direction, effect of displacement rate and energy absorption are analyzed. Configurations with predominantly 0°glass fiber layers fail with delamination as the major failure mode, while configurations with predominantly 90°glass fiber layers fail with central cracking as the major failure mode. GLARE 3, with 1:1 ratio of 0°and 90°fibers, fail with an equal mix of delamination and central cracking. A semi-analytical framework that can be used to predict the force versus displacement curve for central cracking failure is proposed and validated.