Optimizing Lead-free Cs3Sb2I9-based perovskite solar cells by using different charge transport layers: A numerical approach

IF 5.4 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Fadila Kherrat , Lakhdar Dehimi , Fortunato Pezzimenti , Pardeep Singh Bains , Rohit Sharma , Abdullah M.S. Alhuthali , Bassim Arkook , Mohamed H.H. Mahmoud , Rajesh Haldhar , M. Khalid Hossain
{"title":"Optimizing Lead-free Cs3Sb2I9-based perovskite solar cells by using different charge transport layers: A numerical approach","authors":"Fadila Kherrat ,&nbsp;Lakhdar Dehimi ,&nbsp;Fortunato Pezzimenti ,&nbsp;Pardeep Singh Bains ,&nbsp;Rohit Sharma ,&nbsp;Abdullah M.S. Alhuthali ,&nbsp;Bassim Arkook ,&nbsp;Mohamed H.H. Mahmoud ,&nbsp;Rajesh Haldhar ,&nbsp;M. Khalid Hossain","doi":"10.1016/j.inoche.2025.115568","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a comprehensive numerical investigation of lead-free Cs₃Sb₂I₉-based perovskite solar cells with a focus on transport layer optimization. By means of SCAPS-1D simulations, we systematically analyzed eight electron transport layers (ETLs) and six hole transport layers (HTLs) to determine their impact on the device performance. The TiO₂/Cs₃Sb₂I₉/Cu₂O configuration demonstrated superior results, achieving a power conversion efficiency (PCE) of 13.47 %, an open-circuit voltage (Voc) of 1.43 V, a short-circuit current density (Jsc) of 10.92 mA/cm<sup>2</sup>, and a fill factor (FF) of 86 %. Our analysis reveals that optimal design parameters are a Cs₃Sb₂I₉ absorber thickness of 0.7 μm, transport layer thicknesses of 0.1 μm and 0.2 μm for TiO₂ and Cu₂O, respectively, and doping concentrations of 10<sup>19</sup> cm<sup>−3</sup> for both these regions. Additionally, a high device stability can be achieved by maintaining the absorber defect density below 10<sup>14</sup> cm<sup>−3</sup>, the series resistance below 2 Ω·cm<sup>2</sup>, and the operating temperature near 310–320 K. The significant enhancement in the performance of the cell is mainly attributed to a favorable band alignment and efficient charge transport properties of the selected materials. The presented results could be valuable guidance for developing further environmentally friendly photovoltaic technologies.</div></div>","PeriodicalId":13609,"journal":{"name":"Inorganic Chemistry Communications","volume":"182 ","pages":"Article 115568"},"PeriodicalIF":5.4000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387700325016855","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a comprehensive numerical investigation of lead-free Cs₃Sb₂I₉-based perovskite solar cells with a focus on transport layer optimization. By means of SCAPS-1D simulations, we systematically analyzed eight electron transport layers (ETLs) and six hole transport layers (HTLs) to determine their impact on the device performance. The TiO₂/Cs₃Sb₂I₉/Cu₂O configuration demonstrated superior results, achieving a power conversion efficiency (PCE) of 13.47 %, an open-circuit voltage (Voc) of 1.43 V, a short-circuit current density (Jsc) of 10.92 mA/cm2, and a fill factor (FF) of 86 %. Our analysis reveals that optimal design parameters are a Cs₃Sb₂I₉ absorber thickness of 0.7 μm, transport layer thicknesses of 0.1 μm and 0.2 μm for TiO₂ and Cu₂O, respectively, and doping concentrations of 1019 cm−3 for both these regions. Additionally, a high device stability can be achieved by maintaining the absorber defect density below 1014 cm−3, the series resistance below 2 Ω·cm2, and the operating temperature near 310–320 K. The significant enhancement in the performance of the cell is mainly attributed to a favorable band alignment and efficient charge transport properties of the selected materials. The presented results could be valuable guidance for developing further environmentally friendly photovoltaic technologies.

Abstract Image

利用不同电荷传输层优化无铅cs3sb2i9钙钛矿太阳能电池:数值方法
该研究对无铅Cs₃Sb₂I₉基钙钛矿太阳能电池进行了全面的数值研究,重点研究了传输层优化。通过SCAPS-1D模拟,我们系统地分析了8个电子传输层(ETLs)和6个空穴传输层(HTLs),以确定它们对器件性能的影响。TiO₂/Cs₃Sb₂I₉/Cu₂O结构表现出优异的效果,功率转换效率(PCE)为13.47%,开路电压(Voc)为1.43 V,短路电流密度(Jsc)为10.92 mA/cm2,填充系数(FF)为86%。我们的分析表明,最优设计参数是Cs₃Sb₂I₉吸收层厚度为0.7 μm, TiO₂和Cu₂O的传输层厚度分别为0.1 μm和0.2 μm,这两个区域的掺杂浓度为1019 cm−3。此外,通过保持吸收器缺陷密度低于1014 cm−3,串联电阻低于2 Ω·cm2,工作温度接近310-320 K,可以实现较高的器件稳定性。电池性能的显著提高主要归功于所选材料良好的能带对准和高效的电荷输运特性。所提出的结果可以为进一步开发环境友好型光伏技术提供有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Communications
Inorganic Chemistry Communications 化学-无机化学与核化学
CiteScore
5.50
自引率
7.90%
发文量
1013
审稿时长
53 days
期刊介绍: Launched in January 1998, Inorganic Chemistry Communications is an international journal dedicated to the rapid publication of short communications in the major areas of inorganic, organometallic and supramolecular chemistry. Topics include synthetic and reaction chemistry, kinetics and mechanisms of reactions, bioinorganic chemistry, photochemistry and the use of metal and organometallic compounds in stoichiometric and catalytic synthesis or organic compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信