Multiphysics modeling and heat transfer enhancement of underwater vehicle thermal engines

IF 6.9 2区 工程技术 Q2 ENERGY & FUELS
Guohui Wang , Weinan Gao , Jingtao Lei , Yanan Yang
{"title":"Multiphysics modeling and heat transfer enhancement of underwater vehicle thermal engines","authors":"Guohui Wang ,&nbsp;Weinan Gao ,&nbsp;Jingtao Lei ,&nbsp;Yanan Yang","doi":"10.1016/j.applthermaleng.2025.128622","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal engines are essential energy storage components in underwater vehicles that harvest ocean thermal energy. However, most existing studies rely on simplified heat transfer models and fail to capture complex multiphysics interactions. This study develops a comprehensive numerical approach that tracks phase change dynamics, buoyancy-driven convection, and flexible hose deformation simultaneously. To overcome convergence difficulties in large-scale simulations, we developed a physics-constrained gated recurrent unit (GRU) neural network with temporal correction to predict liquid fraction evolution, which can scale results from small-scale simulations (100–250 mm) to full-size prototypes (1100 mm). Experimental validation demonstrates excellent agreement with predictions, achieving a root mean square error of 0.0516 for liquid fraction. Using this validated framework, we investigated how radial fins enhance heat transfer. Results indicate that radial fins reduce the melting time of phase change material (PCM) by 29.4 %, with a 17.6 % improvement in heat transfer area and a 14.3 % enhancement in convection. Among different fin orientations, horizontal fins (0°) are the most efficient of all the fin orientations. They cut melting time by 22 % at a 95 % liquid fraction compared to the -45° orientation. For T-shaped fins, extending the vertical bar from 1 mm to 16 mm results in just an 8–13 % decrease in melting time, even though the volume increases by 16 times, indicating considerable diminishing returns. This paper offers theoretical insights and practical directions for the design of thermal engines in ocean energy applications.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"281 ","pages":"Article 128622"},"PeriodicalIF":6.9000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125032144","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal engines are essential energy storage components in underwater vehicles that harvest ocean thermal energy. However, most existing studies rely on simplified heat transfer models and fail to capture complex multiphysics interactions. This study develops a comprehensive numerical approach that tracks phase change dynamics, buoyancy-driven convection, and flexible hose deformation simultaneously. To overcome convergence difficulties in large-scale simulations, we developed a physics-constrained gated recurrent unit (GRU) neural network with temporal correction to predict liquid fraction evolution, which can scale results from small-scale simulations (100–250 mm) to full-size prototypes (1100 mm). Experimental validation demonstrates excellent agreement with predictions, achieving a root mean square error of 0.0516 for liquid fraction. Using this validated framework, we investigated how radial fins enhance heat transfer. Results indicate that radial fins reduce the melting time of phase change material (PCM) by 29.4 %, with a 17.6 % improvement in heat transfer area and a 14.3 % enhancement in convection. Among different fin orientations, horizontal fins (0°) are the most efficient of all the fin orientations. They cut melting time by 22 % at a 95 % liquid fraction compared to the -45° orientation. For T-shaped fins, extending the vertical bar from 1 mm to 16 mm results in just an 8–13 % decrease in melting time, even though the volume increases by 16 times, indicating considerable diminishing returns. This paper offers theoretical insights and practical directions for the design of thermal engines in ocean energy applications.
水下航行器热机多物理场建模与传热增强
热机是水下航行器中收集海洋热能的重要储能部件。然而,现有的大多数研究依赖于简化的传热模型,无法捕捉复杂的多物理场相互作用。本研究开发了一种综合的数值方法,可以同时跟踪相变动力学、浮力驱动对流和柔性软管变形。为了克服大规模模拟中的收敛困难,我们开发了一种具有时间校正的物理约束门控循环单元(GRU)神经网络来预测液体分数的演变,该网络可以将结果从小规模模拟(100-250 mm)扩展到全尺寸原型(1100 mm)。实验验证表明与预测非常吻合,液体馏分的均方根误差为0.0516。利用这个有效的框架,我们研究了径向翅片如何增强传热。结果表明,径向翅片可使相变材料(PCM)的熔化时间缩短29.4%,传热面积增加17.6%,对流面积增加14.3%。在不同的鳍片取向中,水平鳍(0°)是所有鳍片取向中效率最高的。与-45°取向相比,在95%的液体含量下,它们将熔化时间缩短了22%。对于t型翅片,将垂直杆从1毫米延长到16毫米,即使体积增加了16倍,熔化时间也只减少了8 - 13%,这表明收益显著减少。本文为海洋能应用中的热机设计提供了理论见解和实践方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信