Polydopamine-mediated anchoring of Pd on magnetic Ni@CNTs: A robust core-shell nanocatalyst for recyclable heck cross-coupling

IF 5.4 2区 化学 Q2 CHEMISTRY, PHYSICAL
Rui Yu , Yuli Lan , Guoliang Huang , Congmei Chen , Maofei Ran , Wenjing Sun
{"title":"Polydopamine-mediated anchoring of Pd on magnetic Ni@CNTs: A robust core-shell nanocatalyst for recyclable heck cross-coupling","authors":"Rui Yu ,&nbsp;Yuli Lan ,&nbsp;Guoliang Huang ,&nbsp;Congmei Chen ,&nbsp;Maofei Ran ,&nbsp;Wenjing Sun","doi":"10.1016/j.colsurfa.2025.138554","DOIUrl":null,"url":null,"abstract":"<div><div>The development of high-performance, magnetically recyclable nanocatalysts remains challenging, primarily due to the poor stability and inadequate control over active metal dispersion in conventional magnetic supports. To address these limitations, we designed a Ni@CNTs@PDA–Pd catalyst through innovative interfacial engineering. Carbon nanotube channels effectively encapsulate and protect magnetic nickel nanoparticles, while a polydopamine (PDA) coating enables uniform dispersion of palladium nanoparticles (2.0 ± 0.7 nm). The catalyst exhibits strong superparamagnetism (6.64 emu·g⁻¹), allowing efficient magnetic separation. In Heck reactions, it achieves a turnover frequency (TOF) of 958 h⁻¹ and retains 89.5 % conversion after ten cycles, outperforming most reported Pd/CNT and magnetic catalysts. Density functional theory (DFT) calculations reveal that although Ni encapsulation increases the electron density of the CNT surface—which may hinder Pd deposition—the PDA interlayer counteracts this effect via strong coordination bonds, ensuring excellent Pd stabilization. This study provides key insights into electronic metal–support interactions and offers a scalable strategy for designing high-performance magnetically recyclable catalysts. It highlights the active role of the magnetic core in modulating the electronic environment of catalytic sites and underscores the critical synergy between the core, shell, and active metal in rational catalyst design.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"728 ","pages":"Article 138554"},"PeriodicalIF":5.4000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775725024586","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of high-performance, magnetically recyclable nanocatalysts remains challenging, primarily due to the poor stability and inadequate control over active metal dispersion in conventional magnetic supports. To address these limitations, we designed a Ni@CNTs@PDA–Pd catalyst through innovative interfacial engineering. Carbon nanotube channels effectively encapsulate and protect magnetic nickel nanoparticles, while a polydopamine (PDA) coating enables uniform dispersion of palladium nanoparticles (2.0 ± 0.7 nm). The catalyst exhibits strong superparamagnetism (6.64 emu·g⁻¹), allowing efficient magnetic separation. In Heck reactions, it achieves a turnover frequency (TOF) of 958 h⁻¹ and retains 89.5 % conversion after ten cycles, outperforming most reported Pd/CNT and magnetic catalysts. Density functional theory (DFT) calculations reveal that although Ni encapsulation increases the electron density of the CNT surface—which may hinder Pd deposition—the PDA interlayer counteracts this effect via strong coordination bonds, ensuring excellent Pd stabilization. This study provides key insights into electronic metal–support interactions and offers a scalable strategy for designing high-performance magnetically recyclable catalysts. It highlights the active role of the magnetic core in modulating the electronic environment of catalytic sites and underscores the critical synergy between the core, shell, and active metal in rational catalyst design.
聚多巴胺介导的Pd在磁性Ni@CNTs上的锚定:一种可回收的核-壳纳米催化剂
高性能、磁性可回收的纳米催化剂的开发仍然具有挑战性,主要是由于传统磁性载体的稳定性差和对活性金属分散的控制不足。为了解决这些限制,我们通过创新的界面工程设计了Ni@CNTs @PDA-Pd催化剂。碳纳米管通道有效地封装和保护磁性镍纳米粒子,而聚多巴胺(PDA)涂层可以均匀分散钯纳米粒子(2.0 ± 0.7 nm)。催化剂表现出很强的超顺磁性(6.64 emu·g⁻),可以进行有效的磁分离。在Heck反应中,它达到958 h⁻¹ 的转换频率(TOF),并在10个循环后保持89.5 %的转化率,优于大多数报道的Pd/CNT和磁性催化剂。密度泛函理论(DFT)计算表明,尽管Ni包封增加了碳纳米管表面的电子密度,这可能会阻碍Pd的沉积,但PDA中间层通过强配位键抵消了这种影响,确保了优异的Pd稳定性。这项研究为电子金属支撑相互作用提供了关键见解,并为设计高性能磁可回收催化剂提供了可扩展的策略。它强调了磁芯在调节催化位点的电子环境中的积极作用,并强调了在合理的催化剂设计中,磁芯,壳和活性金属之间的关键协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
9.60%
发文量
2421
审稿时长
56 days
期刊介绍: Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena. The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信