Evaluating high-resolution mean radiant temperature within an urban street canopy: Resolving spatiotemporal variations with LiDAR/thermal infrared scanning and data-driven simulation

IF 7.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Xue Zhong , James Voogt , Brian Bailey , Xiang Zhang , E. Scott Krayenhoff
{"title":"Evaluating high-resolution mean radiant temperature within an urban street canopy: Resolving spatiotemporal variations with LiDAR/thermal infrared scanning and data-driven simulation","authors":"Xue Zhong ,&nbsp;James Voogt ,&nbsp;Brian Bailey ,&nbsp;Xiang Zhang ,&nbsp;E. Scott Krayenhoff","doi":"10.1016/j.buildenv.2025.113819","DOIUrl":null,"url":null,"abstract":"<div><div>Mean radiant temperature (<span><math><msub><mi>T</mi><mrow><mi>m</mi><mi>r</mi><mi>t</mi></mrow></msub></math></span>) is crucial for assessing human thermal exposure, because it quantifies the largest sources of spatial variability in pedestrian-perceived thermal stress and comfort in complicated urban environments. Despite the availability of existing methods for evaluating <span><math><msub><mi>T</mi><mrow><mi>m</mi><mi>r</mi><mi>t</mi></mrow></msub></math></span>, the lack of detailed urban three-dimensional (3D) models and spatially resolved pedestrian-level irradiance from urban surfaces poses a significant challenge in obtaining high-resolution <span><math><msub><mi>T</mi><mrow><mi>m</mi><mi>r</mi><mi>t</mi></mrow></msub></math></span>. This paper introduces a methodology that combines light detection and ranging with thermal infrared (TIR) scanning with data-driven simulations. The approach was applied to a street canyon segment in Salt Lake City during the summer, to construct a complex 3D street model that enables assessment of high spatial resolution (0.3 <span><math><msup><mrow><mi>m</mi></mrow><mn>2</mn></msup></math></span>) shortwave and longwave radiant fluxes of urban surfaces. Based on the refined 3D radiation field, pedestrian-received irradiance at different locations were sampled and then a high-spatial-resolution field (0.5 <span><math><msup><mrow><mi>m</mi></mrow><mn>2</mn></msup></math></span>) of pedestrian-level sampled <span><math><msub><mi>T</mi><mrow><mi>m</mi><mi>r</mi><mi>t</mi></mrow></msub></math></span> (<span><math><msub><mi>T</mi><mrow><mi>m</mi><mi>r</mi><mi>t</mi><mo>_</mo><mi>s</mi><mi>a</mi><mi>m</mi><mi>p</mi><mi>l</mi><mi>e</mi><mi>d</mi></mrow></msub></math></span>) was generated. Such a method for calculating <span><math><msub><mi>T</mi><mrow><mi>m</mi><mi>r</mi><mi>t</mi><mo>_</mo><mi>s</mi><mi>a</mi><mi>m</mi><mi>p</mi><mi>l</mi><mi>e</mi><mi>d</mi></mrow></msub></math></span> is efficient, requiring only 30 s for each round. Direct solar exposure of ground and wall materials, together with their substantial thermal inertia, raised <span><math><msub><mi>T</mi><mrow><mi>m</mi><mi>r</mi><mi>t</mi><mo>_</mo><mi>s</mi><mi>a</mi><mi>m</mi><mi>p</mi><mi>l</mi><mi>e</mi><mi>d</mi></mrow></msub></math></span> to peak values of 59.17 ∼ 65 °C by 17:00. Due to differences in mesh and mechanism for quantifying <span><math><msub><mi>T</mi><mrow><mi>m</mi><mi>r</mi><mi>t</mi></mrow></msub></math></span>, <span><math><msub><mi>T</mi><mrow><mi>m</mi><mi>r</mi><mi>t</mi></mrow></msub></math></span> simulated via the solar and longwave environmental irradiance geometry model typically were 4 ∼ 6 °C higher than <span><math><msub><mi>T</mi><mrow><mi>m</mi><mi>r</mi><mi>t</mi><mo>_</mo><mi>s</mi><mi>a</mi><mi>m</mi><mi>p</mi><mi>l</mi><mi>e</mi><mi>d</mi></mrow></msub></math></span> over sunlit surfaces, and their root mean square error (mean bias error) reached 4.71 (3.19) °C when the solar elevation was high and ground shadows were minimal.</div></div>","PeriodicalId":9273,"journal":{"name":"Building and Environment","volume":"287 ","pages":"Article 113819"},"PeriodicalIF":7.6000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360132325012892","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mean radiant temperature (Tmrt) is crucial for assessing human thermal exposure, because it quantifies the largest sources of spatial variability in pedestrian-perceived thermal stress and comfort in complicated urban environments. Despite the availability of existing methods for evaluating Tmrt, the lack of detailed urban three-dimensional (3D) models and spatially resolved pedestrian-level irradiance from urban surfaces poses a significant challenge in obtaining high-resolution Tmrt. This paper introduces a methodology that combines light detection and ranging with thermal infrared (TIR) scanning with data-driven simulations. The approach was applied to a street canyon segment in Salt Lake City during the summer, to construct a complex 3D street model that enables assessment of high spatial resolution (0.3 m2) shortwave and longwave radiant fluxes of urban surfaces. Based on the refined 3D radiation field, pedestrian-received irradiance at different locations were sampled and then a high-spatial-resolution field (0.5 m2) of pedestrian-level sampled Tmrt (Tmrt_sampled) was generated. Such a method for calculating Tmrt_sampled is efficient, requiring only 30 s for each round. Direct solar exposure of ground and wall materials, together with their substantial thermal inertia, raised Tmrt_sampled to peak values of 59.17 ∼ 65 °C by 17:00. Due to differences in mesh and mechanism for quantifying Tmrt, Tmrt simulated via the solar and longwave environmental irradiance geometry model typically were 4 ∼ 6 °C higher than Tmrt_sampled over sunlit surfaces, and their root mean square error (mean bias error) reached 4.71 (3.19) °C when the solar elevation was high and ground shadows were minimal.
评估城市街道冠层内的高分辨率平均辐射温度:利用激光雷达/热红外扫描和数据驱动模拟解决时空变化
平均辐射温度(Tmrt)对于评估人类热暴露至关重要,因为它量化了复杂城市环境中行人感知的热应力和舒适度的空间变异性的最大来源。尽管现有方法可用于评估Tmrt,但缺乏详细的城市三维(3D)模型和来自城市表面的空间分辨行人水平辐照度,这对获得高分辨率Tmrt构成了重大挑战。本文介绍了一种将光探测和测距与热红外(TIR)扫描与数据驱动模拟相结合的方法。该方法在夏季应用于盐湖城的街道峡谷段,构建了一个复杂的3D街道模型,可以评估城市表面的高空间分辨率(0.3 m2)短波和长波辐射通量。基于细化后的三维辐射场,对不同位置行人接收到的辐照度进行采样,生成一个高空间分辨率(0.5 m2)的行人级采样Tmrt (tmrt_sampling)。这种计算tmrt_sampling的方法是高效的,每轮只需要30秒。地面和墙体材料的直接太阳照射,加上它们的大量热惯性,在17:00时将tmrt_sampling提高到59.17 ~ 65°C的峰值。由于量化Tmrt的网格和机制的差异,在阳光照射的表面上,通过太阳和长波环境辐照几何模型模拟的Tmrt通常比tmrt_采样的Tmrt高4 ~ 6°C,当太阳高度高且地面阴影最小时,它们的均方根误差(平均偏差误差)达到4.71(3.19)°C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Building and Environment
Building and Environment 工程技术-工程:环境
CiteScore
12.50
自引率
23.00%
发文量
1130
审稿时长
27 days
期刊介绍: Building and Environment, an international journal, is dedicated to publishing original research papers, comprehensive review articles, editorials, and short communications in the fields of building science, urban physics, and human interaction with the indoor and outdoor built environment. The journal emphasizes innovative technologies and knowledge verified through measurement and analysis. It covers environmental performance across various spatial scales, from cities and communities to buildings and systems, fostering collaborative, multi-disciplinary research with broader significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信