Georgios Amanatidis , Ben Berger , Tomer Ezra , Michal Feldman , Federico Fusco , Rebecca Reiffenhäuser , Artem Tsikiridis
{"title":"Pandora's box problem with time constraints","authors":"Georgios Amanatidis , Ben Berger , Tomer Ezra , Michal Feldman , Federico Fusco , Rebecca Reiffenhäuser , Artem Tsikiridis","doi":"10.1016/j.artint.2025.104426","DOIUrl":null,"url":null,"abstract":"<div><div>The Pandora's Box problem models the search for the best alternative when evaluation is costly. In the simplest variant, a decision maker is presented with <em>n</em> boxes, each associated with a cost of inspection and a hidden random reward. The decision maker inspects a subset of these boxes one after the other, in a possibly adaptive order, and gains the difference between the largest revealed reward and the sum of the inspection costs. Although this classic version is well understood (Weitzman 1979), there is a flourishing recent literature on variants of the problem. Here we introduce a general framework—the Pandora's Box Over Time problem—that captures a wide range of variants where time plays a role, e.g., by constraining the schedules of exploration and influencing costs and rewards. In our framework, boxes have time-dependent rewards and costs, whereas inspection may require a box-specific processing time. Moreover, once a box is inspected, its reward may deteriorate over time. Our main result is an efficient constant-factor approximation to the optimal strategy for the Pandora's Box Over Time problem, which is generally NP-hard to compute. We further obtain improved results for the natural special cases where boxes have no processing time, boxes are available only in specific time slots, or when costs and reward distributions are time-independent (but rewards may still deteriorate after inspection).</div></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"349 ","pages":"Article 104426"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370225001456","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The Pandora's Box problem models the search for the best alternative when evaluation is costly. In the simplest variant, a decision maker is presented with n boxes, each associated with a cost of inspection and a hidden random reward. The decision maker inspects a subset of these boxes one after the other, in a possibly adaptive order, and gains the difference between the largest revealed reward and the sum of the inspection costs. Although this classic version is well understood (Weitzman 1979), there is a flourishing recent literature on variants of the problem. Here we introduce a general framework—the Pandora's Box Over Time problem—that captures a wide range of variants where time plays a role, e.g., by constraining the schedules of exploration and influencing costs and rewards. In our framework, boxes have time-dependent rewards and costs, whereas inspection may require a box-specific processing time. Moreover, once a box is inspected, its reward may deteriorate over time. Our main result is an efficient constant-factor approximation to the optimal strategy for the Pandora's Box Over Time problem, which is generally NP-hard to compute. We further obtain improved results for the natural special cases where boxes have no processing time, boxes are available only in specific time slots, or when costs and reward distributions are time-independent (but rewards may still deteriorate after inspection).
期刊介绍:
The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.