Data-driven design of doped SnS2 for thermal runaway gas detection

IF 5.4 2区 化学 Q2 CHEMISTRY, PHYSICAL
Pengtao Wang, Kun Xie, Chao Zhang, Long Lin
{"title":"Data-driven design of doped SnS2 for thermal runaway gas detection","authors":"Pengtao Wang,&nbsp;Kun Xie,&nbsp;Chao Zhang,&nbsp;Long Lin","doi":"10.1016/j.colsurfa.2025.138546","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-ion batteries release harmful gases during thermal runaway, making high-performance gas-sensitive materials for early warning systems crucial. This study constructed a dataset of adsorption energies for 28 noble metal-doped SnS<sub>2</sub> systems with 6 gases (C<sub>2</sub>H<sub>4</sub>, C<sub>3</sub>H<sub>6</sub>, CH<sub>4</sub>, CO, CO<sub>2</sub>, H<sub>2</sub>). We developed machine learning models to predict adsorption energies, incorporating both doping atoms and the system's electronic structure (Feature set II), which improved model generalization compared to traditional methods relying only on doping atoms or gas properties (Feature set I). The Gaussian Process Regression model achieved the best performance under Feature set II (R<sup>2</sup> = 0.82). The Au-doped SnS<sub>2</sub> system was further analyzed using density of states (DOS), electron localization function (ELF), charge density difference (CDD), and I–V characteristics. Results indicate that gas adsorption significantly alters the material's electronic and transport properties, especially for gases like CO andC<sub>3</sub>H<sub>6</sub>, demonstrating selective sensing and conductivity modulation. This study proposes a multi-scale design strategy combining first-principles calculations and machine learning, providing insights for developing gas sensors and thermal runaway warning systems in batteries.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"728 ","pages":"Article 138546"},"PeriodicalIF":5.4000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775725024501","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion batteries release harmful gases during thermal runaway, making high-performance gas-sensitive materials for early warning systems crucial. This study constructed a dataset of adsorption energies for 28 noble metal-doped SnS2 systems with 6 gases (C2H4, C3H6, CH4, CO, CO2, H2). We developed machine learning models to predict adsorption energies, incorporating both doping atoms and the system's electronic structure (Feature set II), which improved model generalization compared to traditional methods relying only on doping atoms or gas properties (Feature set I). The Gaussian Process Regression model achieved the best performance under Feature set II (R2 = 0.82). The Au-doped SnS2 system was further analyzed using density of states (DOS), electron localization function (ELF), charge density difference (CDD), and I–V characteristics. Results indicate that gas adsorption significantly alters the material's electronic and transport properties, especially for gases like CO andC3H6, demonstrating selective sensing and conductivity modulation. This study proposes a multi-scale design strategy combining first-principles calculations and machine learning, providing insights for developing gas sensors and thermal runaway warning systems in batteries.
用于热失控气体检测的掺杂SnS2数据驱动设计
锂离子电池在热失控时释放有害气体,因此高性能气敏材料对于早期预警系统至关重要。本研究构建了28个贵金属掺杂SnS2体系在6种气体(C2H4、C3H6、CH4、CO、CO2、H2)下的吸附能数据集。我们开发了机器学习模型来预测吸附能,结合掺杂原子和系统的电子结构(特征集II),与仅依赖掺杂原子或气体性质的传统方法(特征集I)相比,这提高了模型的泛化程度。高斯过程回归模型在Feature set II下表现最佳(R2 = 0.82)。利用态密度(DOS)、电子局域函数(ELF)、电荷密度差(CDD)和I-V特性进一步分析了au掺杂SnS2体系。结果表明,气体吸附显著改变了材料的电子和输运性质,特别是对CO和c3h6等气体,表现出选择性传感和电导率调制。本研究提出了一种结合第一性原理计算和机器学习的多尺度设计策略,为开发电池中的气体传感器和热失控预警系统提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
9.60%
发文量
2421
审稿时长
56 days
期刊介绍: Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena. The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信