Redox cascade engineering in urea-crystallized manganese-integrated nickel-iron metal-organic frameworks for high-performance hybrid supercapacitors

IF 7.9 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Shen-Fa Dong , Hamed Cheshideh , Subbiramaniyan Kubendhiran , Chutima Kongvarhodom , Muhammad Saukani , Sibidou Yougbaré , Hung-Ming Chen , Yung-Fu Wu , Lu-Yin Lin
{"title":"Redox cascade engineering in urea-crystallized manganese-integrated nickel-iron metal-organic frameworks for high-performance hybrid supercapacitors","authors":"Shen-Fa Dong ,&nbsp;Hamed Cheshideh ,&nbsp;Subbiramaniyan Kubendhiran ,&nbsp;Chutima Kongvarhodom ,&nbsp;Muhammad Saukani ,&nbsp;Sibidou Yougbaré ,&nbsp;Hung-Ming Chen ,&nbsp;Yung-Fu Wu ,&nbsp;Lu-Yin Lin","doi":"10.1016/j.jpowsour.2025.238566","DOIUrl":null,"url":null,"abstract":"<div><div>The growing need for hybrid energy storage systems that merge the advantages of batteries and supercapacitors has sparked considerable interest. As a result, researchers have begun to explore advanced electrode materials that offer both strong redox activity and long-term structural stability. Our study proposes a dual-modification approach to engineer a highly porous and redox-enriched NiFe-based metal organic framework (NiFe-MOF) through urea-assisted synthesis and in situ integration of MnO<sub>2</sub>. The final Mn/NiFeMOF-U hybrid shows a hierarchically porous structure with abundant faradaic sites that facilitate fast ion transport and enhanced multivalent redox coupling across Ni, Fe, and Mn centers. The results indicate surface-controlled charge storage dominated by reversible Ni<sup>2+</sup>/Ni<sup>3+</sup>, Fe<sup>2+</sup>/Fe<sup>3+</sup>, and Mn<sup>2+</sup>/Mn<sup>4+</sup> transitions. Furthermore, electron hopping and a robust electron cascade are identified as the main electron transfer pathways in this system. By pairing Mn/NiFeMOF-U with reduced graphene oxide (rGO), the assembled battery-supercapacitor hybrid (BSH) demonstrates an outstanding energy density of 1.7 mWh/cm<sup>2</sup> at 6.4 mW/cm<sup>2</sup>, while maintaining 91% capacitance retention and 99% Coulombic efficiency after 10,000 cycles. Overall, we believe this study not only presents a new strategy for designing redox-modulated MOF hybrids but also confirms their practical potential for next-generation electrochemical energy storage.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"660 ","pages":"Article 238566"},"PeriodicalIF":7.9000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325024024","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The growing need for hybrid energy storage systems that merge the advantages of batteries and supercapacitors has sparked considerable interest. As a result, researchers have begun to explore advanced electrode materials that offer both strong redox activity and long-term structural stability. Our study proposes a dual-modification approach to engineer a highly porous and redox-enriched NiFe-based metal organic framework (NiFe-MOF) through urea-assisted synthesis and in situ integration of MnO2. The final Mn/NiFeMOF-U hybrid shows a hierarchically porous structure with abundant faradaic sites that facilitate fast ion transport and enhanced multivalent redox coupling across Ni, Fe, and Mn centers. The results indicate surface-controlled charge storage dominated by reversible Ni2+/Ni3+, Fe2+/Fe3+, and Mn2+/Mn4+ transitions. Furthermore, electron hopping and a robust electron cascade are identified as the main electron transfer pathways in this system. By pairing Mn/NiFeMOF-U with reduced graphene oxide (rGO), the assembled battery-supercapacitor hybrid (BSH) demonstrates an outstanding energy density of 1.7 mWh/cm2 at 6.4 mW/cm2, while maintaining 91% capacitance retention and 99% Coulombic efficiency after 10,000 cycles. Overall, we believe this study not only presents a new strategy for designing redox-modulated MOF hybrids but also confirms their practical potential for next-generation electrochemical energy storage.

Abstract Image

高性能混合超级电容器用尿素结晶锰-集成镍铁金属-有机框架的氧化还原级联工程
对融合电池和超级电容器优点的混合能源存储系统日益增长的需求引发了相当大的兴趣。因此,研究人员已经开始探索既具有强氧化还原活性又具有长期结构稳定性的先进电极材料。我们的研究提出了一种双改性方法,通过尿素辅助合成和MnO2的原位整合来设计高多孔和氧化还原富集的nfe基金属有机骨架(nfe - mof)。最终的Mn/NiFeMOF-U杂化物显示出分层多孔结构,具有丰富的法拉第位,有助于快速离子传输和增强Ni, Fe和Mn中心的多价氧化还原偶联。结果表明,表面控制电荷存储以可逆的Ni2+/Ni3+、Fe2+/Fe3+和Mn2+/Mn4+转变为主。此外,电子跳跃和稳健的电子级联是该系统的主要电子传递途径。通过将Mn/NiFeMOF-U与还原氧化石墨烯(rGO)配对,组装的电池-超级电容器混合(BSH)在6.4 mW/cm2时具有1.7 mWh/cm2的出色能量密度,同时在10,000次循环后保持91%的电容保持率和99%的库仑效率。总的来说,我们认为这项研究不仅提出了一种设计氧化还原调制MOF混合材料的新策略,而且证实了它们在下一代电化学储能方面的实际潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信