Enhancing natural gas purification in mixed matrix membranes: Stepwise MOF filler functionalization through amino grafting and defect engineering

IF 9 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Jiaqi Wang , Mufei Li , Jingmeng Wan , Jingui Duan , Wanqin Jin
{"title":"Enhancing natural gas purification in mixed matrix membranes: Stepwise MOF filler functionalization through amino grafting and defect engineering","authors":"Jiaqi Wang ,&nbsp;Mufei Li ,&nbsp;Jingmeng Wan ,&nbsp;Jingui Duan ,&nbsp;Wanqin Jin","doi":"10.1016/j.memsci.2025.124765","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient gas separations are crucial for sustainable energy production and industrial processes, yet membrane materials face a fundamental permeability–selectivity trade-off. Here, we overcome this limitation through a rational stepwise-functionalization strategy for metal–organic framework (MOF) fillers, which synergistically combines amino grafting (enhancing CO<sub>2</sub> affinity) with defect engineering (enabling accelerated transport). The resulting mixed matrix membrane exhibits exceptional CO<sub>2</sub>/CH<sub>4</sub> separation performance—achieving a CO<sub>2</sub> permeability of 1900 Barrer and a selectivity of 63 (0.3 MPa, 25 °C)—surpassing membranes with pristine or solely amino-functionalized fillers and exceeding the 2019 Robeson upper bound. In-situ spectroscopy confirms the critical role of amino groups in CO<sub>2</sub> chemisorption, while transport modelling attributes enhanced permeation to engineered defects. Crucially, the separation performance is fully recoverable after thermal/pressure cycling and remains stable over 200 h of operation. The fundamental insights of this work establish a synergistic chemical–structural design route for next-generation separation membranes.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"738 ","pages":"Article 124765"},"PeriodicalIF":9.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738825010786","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient gas separations are crucial for sustainable energy production and industrial processes, yet membrane materials face a fundamental permeability–selectivity trade-off. Here, we overcome this limitation through a rational stepwise-functionalization strategy for metal–organic framework (MOF) fillers, which synergistically combines amino grafting (enhancing CO2 affinity) with defect engineering (enabling accelerated transport). The resulting mixed matrix membrane exhibits exceptional CO2/CH4 separation performance—achieving a CO2 permeability of 1900 Barrer and a selectivity of 63 (0.3 MPa, 25 °C)—surpassing membranes with pristine or solely amino-functionalized fillers and exceeding the 2019 Robeson upper bound. In-situ spectroscopy confirms the critical role of amino groups in CO2 chemisorption, while transport modelling attributes enhanced permeation to engineered defects. Crucially, the separation performance is fully recoverable after thermal/pressure cycling and remains stable over 200 h of operation. The fundamental insights of this work establish a synergistic chemical–structural design route for next-generation separation membranes.

Abstract Image

增强混合基质膜中的天然气净化:通过氨基接枝和缺陷工程逐步实现MOF填料功能化
高效的气体分离对可持续能源生产和工业过程至关重要,但膜材料面临着一个基本的渗透性和选择性权衡。在这里,我们通过合理的金属有机框架(MOF)填料的逐步功能化策略克服了这一限制,该策略将氨基接枝(增强CO2亲和力)与缺陷工程(加速传输)协同结合。所得到的混合基质膜具有优异的CO2/CH4分离性能,其CO2渗透率为1900 Barrer,选择性为63 (0.3 MPa, 25°C),超过了原始或纯氨基功能化填料的膜,并超过了2019罗伯逊上限。原位光谱证实了氨基在CO2化学吸附中的关键作用,而传输模型将增强的渗透归因于工程缺陷。关键是,在热/压循环后,分离性能完全恢复,并且在运行200 h以上保持稳定。这项工作的基本见解建立了下一代分离膜的协同化学结构设计路线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信