Poornima Vengaprath Bhattathiri , Warren Batchelor , Antonio Patti , Amit Arora
{"title":"Techno-economic evaluation of multiple product scenarios from pineapple leaf waste in integrated biorefinery","authors":"Poornima Vengaprath Bhattathiri , Warren Batchelor , Antonio Patti , Amit Arora","doi":"10.1016/j.biteb.2025.102321","DOIUrl":null,"url":null,"abstract":"<div><div>Agricultural residues such as pineapple leaves represent an abundant yet underutilized resource for value addition. This study assesses the techno-economic feasibility of producing high-value products from pineapple leaf waste through a novel single-step hydrothermal process. Four scenarios were evaluated: (i) recovery of cellulose nanofibers (CNF), xylooligosaccharides (XOS), and polyphenol powder (PP) (CNF + XOS + PP), (ii) CNF + XOS, (iii) CNF + PP, and (iv) CNF only. For a 5 TPH plant operating 180 days annually (base case), the CNF + XOS + PP scenario yielded a net present value (NPV) of US$177.2 million, an internal rate of return (IRR) of 38.3 %, and a payback period (PBP) of 3.4 years. The CNF + PP scenario achieved even higher profitability with an NPV of US$196.5 million, an IRR of 40.8 %, and a PBP of 2.9 years. Sensitivity analysis revealed that operational duration and CNF price are the most influential factors. Multiproduct scenarios demonstrated significantly higher viability than CNF-only production (NPV US$53.6 million). The CNF-only case remains profitable if the minimum selling price (MSP) of CNF exceeds US$32.8/kg. Breakeven analysis indicated MSPs of US$20/kg for both CNF and XOS in the CNF + XOS + PP scenario, and US$30/kg (CNF) and US$15/kg (PP) in the CNF + PP scenario. Overall, the findings highlight that integrated agri-waste biorefineries offer strong technical and economic potential for sustainable product development and waste valorization.</div></div>","PeriodicalId":8947,"journal":{"name":"Bioresource Technology Reports","volume":"32 ","pages":"Article 102321"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589014X25003044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Agricultural residues such as pineapple leaves represent an abundant yet underutilized resource for value addition. This study assesses the techno-economic feasibility of producing high-value products from pineapple leaf waste through a novel single-step hydrothermal process. Four scenarios were evaluated: (i) recovery of cellulose nanofibers (CNF), xylooligosaccharides (XOS), and polyphenol powder (PP) (CNF + XOS + PP), (ii) CNF + XOS, (iii) CNF + PP, and (iv) CNF only. For a 5 TPH plant operating 180 days annually (base case), the CNF + XOS + PP scenario yielded a net present value (NPV) of US$177.2 million, an internal rate of return (IRR) of 38.3 %, and a payback period (PBP) of 3.4 years. The CNF + PP scenario achieved even higher profitability with an NPV of US$196.5 million, an IRR of 40.8 %, and a PBP of 2.9 years. Sensitivity analysis revealed that operational duration and CNF price are the most influential factors. Multiproduct scenarios demonstrated significantly higher viability than CNF-only production (NPV US$53.6 million). The CNF-only case remains profitable if the minimum selling price (MSP) of CNF exceeds US$32.8/kg. Breakeven analysis indicated MSPs of US$20/kg for both CNF and XOS in the CNF + XOS + PP scenario, and US$30/kg (CNF) and US$15/kg (PP) in the CNF + PP scenario. Overall, the findings highlight that integrated agri-waste biorefineries offer strong technical and economic potential for sustainable product development and waste valorization.