{"title":"Ultrasound-assisted photocatalytic oxidation of isopropanol using Fe₂O₃ nanoparticles","authors":"A.M. Dorgham, Rania Farouq","doi":"10.1016/j.nanoso.2025.101561","DOIUrl":null,"url":null,"abstract":"<div><div>Photocatalytic alcohol decomposition is crucial for the preparation of valuable organics, and efficient treatment of isopropyl alcohol (IPA)-contaminated water is a priority in the semiconductor industry. In this study, Fe<sub>2</sub>O<sub>3</sub> nanoparticles were developed as a photoactive, environmentally friendly catalyst for the oxidation of isopropanol to acetone. The catalyst demonstrated high efficiency in an oxidative process utilizing O<sub>2</sub> as the sole oxidant, without the need for additional surfactants or nitrogenous bases. The novelty of the process lies in the combination of sonolysis and photocatalysis, which enhances mass transfer and accelerates acetone production. Characterization of the Fe<sub>2</sub>O<sub>3</sub> nanoparticles was conducted using X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), and Scanning Electron Microscopy (SEM). This approach provides a promising strategy for the rapid mineralization of isopropanol, offering potential applications in the semiconductor industry by reducing both processing time and costs.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"44 ","pages":"Article 101561"},"PeriodicalIF":5.4500,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X25001313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Photocatalytic alcohol decomposition is crucial for the preparation of valuable organics, and efficient treatment of isopropyl alcohol (IPA)-contaminated water is a priority in the semiconductor industry. In this study, Fe2O3 nanoparticles were developed as a photoactive, environmentally friendly catalyst for the oxidation of isopropanol to acetone. The catalyst demonstrated high efficiency in an oxidative process utilizing O2 as the sole oxidant, without the need for additional surfactants or nitrogenous bases. The novelty of the process lies in the combination of sonolysis and photocatalysis, which enhances mass transfer and accelerates acetone production. Characterization of the Fe2O3 nanoparticles was conducted using X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), and Scanning Electron Microscopy (SEM). This approach provides a promising strategy for the rapid mineralization of isopropanol, offering potential applications in the semiconductor industry by reducing both processing time and costs.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .