Experimental investigation of particle size effects on high temperature thermal modification characteristics of granular coal

IF 7.5 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2025-10-08 DOI:10.1016/j.fuel.2025.137000
Jinyang Zhang , Guoliang Song , Haiyang Wang , Ruize Tan , Weijian Song , Yi Han
{"title":"Experimental investigation of particle size effects on high temperature thermal modification characteristics of granular coal","authors":"Jinyang Zhang ,&nbsp;Guoliang Song ,&nbsp;Haiyang Wang ,&nbsp;Ruize Tan ,&nbsp;Weijian Song ,&nbsp;Yi Han","doi":"10.1016/j.fuel.2025.137000","DOIUrl":null,"url":null,"abstract":"<div><div>This study systematically examined the modification characteristics of coal particles across four size fractions (0–0.355 mm, 0–1 mm, 0–2 mm, and 0–4 mm) in a circulating fluidized bed (CFB) preheating combustion system operating at 850-950℃. Results revealed that volatile release, pore evolution, and emission profiles exhibit strong particle-size dependence. Notably, 0–4 mm particles achieved peak combustion efficiency (96.77 %) and gas calorific value (2.86 MJ/Nm<sup>3</sup>) at 850-900℃, benefiting from progressive fragmentation that extended residence time while suppressing thermal NO<em><sub>x</sub></em> formation. By contrast, 0–2 mm particles developed optimized pore structures (42 % surface area increase) and enhanced reactivity at 900℃, though with elevated NO<em><sub>x</sub></em> emissions (231 mg/m<sup>3</sup>) due to intensified fuel-nitrogen oxidation. At 950℃, thermal treatment induced structural homogenization, narrowing combustion efficiency variations to &lt; 2.3 % but exacerbating NO<em><sub>x</sub></em> generation in 0–4 mm particles. Advanced characterization identified key mechanistic relationships: 0–0.355 mm particles suffered pore degradation under thermal stress, whereas Raman spectroscopy revealed increased carbon defect concentrations in fragmented 0–4 mm particles, correlating with reactivity enhancement. Critical trade-offs were observed between combustion performance and emissions, with 0–4 mm particles enabling staged NOx control but requiring residence time optimization, while smaller particles favored rapid kinetics but demanded fuel-nitrogen conversion mitigation.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"406 ","pages":"Article 137000"},"PeriodicalIF":7.5000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236125027255","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study systematically examined the modification characteristics of coal particles across four size fractions (0–0.355 mm, 0–1 mm, 0–2 mm, and 0–4 mm) in a circulating fluidized bed (CFB) preheating combustion system operating at 850-950℃. Results revealed that volatile release, pore evolution, and emission profiles exhibit strong particle-size dependence. Notably, 0–4 mm particles achieved peak combustion efficiency (96.77 %) and gas calorific value (2.86 MJ/Nm3) at 850-900℃, benefiting from progressive fragmentation that extended residence time while suppressing thermal NOx formation. By contrast, 0–2 mm particles developed optimized pore structures (42 % surface area increase) and enhanced reactivity at 900℃, though with elevated NOx emissions (231 mg/m3) due to intensified fuel-nitrogen oxidation. At 950℃, thermal treatment induced structural homogenization, narrowing combustion efficiency variations to < 2.3 % but exacerbating NOx generation in 0–4 mm particles. Advanced characterization identified key mechanistic relationships: 0–0.355 mm particles suffered pore degradation under thermal stress, whereas Raman spectroscopy revealed increased carbon defect concentrations in fragmented 0–4 mm particles, correlating with reactivity enhancement. Critical trade-offs were observed between combustion performance and emissions, with 0–4 mm particles enabling staged NOx control but requiring residence time optimization, while smaller particles favored rapid kinetics but demanded fuel-nitrogen conversion mitigation.
粒径对颗粒煤高温热改性特性影响的实验研究
本研究在850-950℃的循环流化床(CFB)预热燃烧系统中,系统地研究了煤颗粒在0-0.355 mm、0- 1mm、0- 2mm和0- 4mm四个粒径段的改性特性。结果表明,挥发性释放、孔隙演化和排放曲线表现出强烈的粒径依赖性。值得注意的是,0-4 mm颗粒在850-900℃时达到了最高的燃烧效率(96.77%)和气体热值(2.86 MJ/Nm3),这得益于渐进破碎延长了停留时间,同时抑制了NOx的热生成。相比之下,0-2 mm颗粒具有优化的孔隙结构(表面积增加42%),并且在900℃下的反应性增强,但由于燃料氮氧化加剧,NOx排放量增加(231 mg/m3)。在950℃时,热处理诱导结构均质化,将燃烧效率变化幅度缩小至2.3%,但加剧了0-4 mm颗粒中NOx的生成。高级表征确定了关键的机制关系:0-0.355 mm颗粒在热应力下孔隙降解,而拉曼光谱显示0-4 mm颗粒碎片中的碳缺陷浓度增加,与反应性增强相关。在燃烧性能和排放之间进行了关键的权衡,0-4毫米颗粒可以分阶段控制NOx,但需要优化停留时间,而较小的颗粒有利于快速动力学,但需要减缓燃料氮转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信