Malathi Arumugam , N. Subha , A. Ravi Sankar , Thillai Sivakumar Natarajan , Hsi-Hsien Yang
{"title":"Layered double hydroxide materials based next-generation photocatalytic system for CO2 reduction and H2 production applications","authors":"Malathi Arumugam , N. Subha , A. Ravi Sankar , Thillai Sivakumar Natarajan , Hsi-Hsien Yang","doi":"10.1016/j.flatc.2025.100947","DOIUrl":null,"url":null,"abstract":"<div><div>Photocatalytic technology is advancing rapidly, offering enormous potential for fostering a sustainable future. Its ability to enable clean energy production through eco-friendly applications has made it a key component of global sustainability efforts. Layered double hydroxides (LDHs) have emerged as promising photocatalysts owing to their unique structural, electronic, and chemical properties. These qualities place LDHs at the forefront of addressing emerging energy and environmental challenges, further strengthening their importance in photocatalytic applications. The various compositions of LDHs, achieved through the selective variation of metal cations (M<sup>2+</sup> and M<sup>3+</sup>), enable precise bandgap engineering to optimize light absorption. Furthermore, LDHs exhibit remarkable stability under ultraviolet and visible light, ensuring their durability over time. Their light-harvesting and catalytic activities are further enhanced when integrated with other materials, thereby expanding their application scope. These synergistic properties enable LDHs to excel in photocatalytic processes aimed at clean and sustainable energy generation. This review emphasizes LDH-based heterostructures for photocatalytic energy conversion, particularly in hydrogen (H<sub>2</sub>) production and carbon dioxide (CO<sub>2</sub>) reduction, highlighting their considerable potential to drive the development of a durable LDH photocatalytic system for future sustainable energy solutions is also presented.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"54 ","pages":"Article 100947"},"PeriodicalIF":6.2000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262725001412","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Photocatalytic technology is advancing rapidly, offering enormous potential for fostering a sustainable future. Its ability to enable clean energy production through eco-friendly applications has made it a key component of global sustainability efforts. Layered double hydroxides (LDHs) have emerged as promising photocatalysts owing to their unique structural, electronic, and chemical properties. These qualities place LDHs at the forefront of addressing emerging energy and environmental challenges, further strengthening their importance in photocatalytic applications. The various compositions of LDHs, achieved through the selective variation of metal cations (M2+ and M3+), enable precise bandgap engineering to optimize light absorption. Furthermore, LDHs exhibit remarkable stability under ultraviolet and visible light, ensuring their durability over time. Their light-harvesting and catalytic activities are further enhanced when integrated with other materials, thereby expanding their application scope. These synergistic properties enable LDHs to excel in photocatalytic processes aimed at clean and sustainable energy generation. This review emphasizes LDH-based heterostructures for photocatalytic energy conversion, particularly in hydrogen (H2) production and carbon dioxide (CO2) reduction, highlighting their considerable potential to drive the development of a durable LDH photocatalytic system for future sustainable energy solutions is also presented.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)