A.X.H. Yong , A. Endruweit , A. George , D. May , Y.A. Aksoy , M.A. Ali , T. Allen , M. Bender , M. Bodaghi , B. Caglar , H. Caglar , A. Chiminelli , S. Comas-Cardona , R. de Ribains , J. Dittmann , C. Dransfeld , E. Fauster , A. Guilloux , P. Hubert , S. Idapalapati , O. Yuksel
{"title":"Through-thickness compaction response of reinforcement fabrics: Development of a test standard","authors":"A.X.H. Yong , A. Endruweit , A. George , D. May , Y.A. Aksoy , M.A. Ali , T. Allen , M. Bender , M. Bodaghi , B. Caglar , H. Caglar , A. Chiminelli , S. Comas-Cardona , R. de Ribains , J. Dittmann , C. Dransfeld , E. Fauster , A. Guilloux , P. Hubert , S. Idapalapati , O. Yuksel","doi":"10.1016/j.compositesa.2025.109348","DOIUrl":null,"url":null,"abstract":"<div><div>Characterisation of the compaction response of reinforcement fabrics is an important component in the design of composite manufacturing processes. To standardise a best practice method, 22 international organisations participated in an exercise to assess the viability and reproducibility of the method discussed in this work. All participants were supplied with the same multiaxial E-glass fibre non-crimp fabric and instructed to measure the compaction stress as a function of the specimen thickness following a set of guidelines. The scatter in results between participants was quantified in terms of the coefficient of variation (CV). The CV of the maximum compaction stress determined at a target specimen thickness of 3 mm (for 10 fabric layers) was 42 % for dry specimens and 46 % for wet specimens, however this was influenced by scatter in the thickness values, which deviated from the target. The CV of the specimen thickness at a compaction stress of 10<sup>5</sup> Pa was 4 %. In addition, a power law model and a model based on bending of beams were fitted to the compaction curves. Both generally produced fits with high values of the coefficient of determination. The observed level of scatter is thought to be caused by issues with the implementation of the procedures and by variability in the specimen properties, as well as the very steep variation of the force/thickness curve at the required target. The guidelines used here aim to minimise inaccuracies in the test method and will be proposed as a test protocol for standardisation.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"200 ","pages":"Article 109348"},"PeriodicalIF":8.1000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25006426","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Characterisation of the compaction response of reinforcement fabrics is an important component in the design of composite manufacturing processes. To standardise a best practice method, 22 international organisations participated in an exercise to assess the viability and reproducibility of the method discussed in this work. All participants were supplied with the same multiaxial E-glass fibre non-crimp fabric and instructed to measure the compaction stress as a function of the specimen thickness following a set of guidelines. The scatter in results between participants was quantified in terms of the coefficient of variation (CV). The CV of the maximum compaction stress determined at a target specimen thickness of 3 mm (for 10 fabric layers) was 42 % for dry specimens and 46 % for wet specimens, however this was influenced by scatter in the thickness values, which deviated from the target. The CV of the specimen thickness at a compaction stress of 105 Pa was 4 %. In addition, a power law model and a model based on bending of beams were fitted to the compaction curves. Both generally produced fits with high values of the coefficient of determination. The observed level of scatter is thought to be caused by issues with the implementation of the procedures and by variability in the specimen properties, as well as the very steep variation of the force/thickness curve at the required target. The guidelines used here aim to minimise inaccuracies in the test method and will be proposed as a test protocol for standardisation.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.