{"title":"Improving the selectivity of electrochemical CO2 reduction to multicarbon chemicals through microenvironment engineering","authors":"Shouzhong Zou","doi":"10.1016/j.coelec.2025.101759","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical carbon dioxide reduction reaction (eCO<sub>2</sub>RR) is a promising approach to reduce the concentration of CO<sub>2</sub> in the atmosphere and produce value-added chemicals. Due to the high stability of CO<sub>2</sub> and the complex reaction pathways, the selectivity and reaction rate of converting CO<sub>2</sub> into high-value chemicals, especially multicarbon products, remain unsatisfactory for viable commercial applications. In conjunction with developing catalysts with high intrinsic activity and selectivity, engineering the microenvironment to which the catalysts are exposed has become a versatile and effective means to steer the reaction pathway toward desirable C<sub>2+</sub> products with high selectivity and at a practically viable current density. This review provides an overview of recent advancements in steering eCO<sub>2</sub>RR toward C<sub>2+</sub> on Cu-based catalysts through microenvironment engineering in the past two years. Selective examples are used to illustrate the efficacy of each microenvironment engineering approach. Perspectives on future research directions are also provided.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"54 ","pages":"Article 101759"},"PeriodicalIF":6.9000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910325001188","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical carbon dioxide reduction reaction (eCO2RR) is a promising approach to reduce the concentration of CO2 in the atmosphere and produce value-added chemicals. Due to the high stability of CO2 and the complex reaction pathways, the selectivity and reaction rate of converting CO2 into high-value chemicals, especially multicarbon products, remain unsatisfactory for viable commercial applications. In conjunction with developing catalysts with high intrinsic activity and selectivity, engineering the microenvironment to which the catalysts are exposed has become a versatile and effective means to steer the reaction pathway toward desirable C2+ products with high selectivity and at a practically viable current density. This review provides an overview of recent advancements in steering eCO2RR toward C2+ on Cu-based catalysts through microenvironment engineering in the past two years. Selective examples are used to illustrate the efficacy of each microenvironment engineering approach. Perspectives on future research directions are also provided.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •