Sergio Edgar Franco, Jing Wang, Majid Gholami Shirkoohi, Qiao Chen, Walter Mérida
{"title":"Public transit electrification planning with energy storage via second-life batteries – a stochastic programming approach","authors":"Sergio Edgar Franco, Jing Wang, Majid Gholami Shirkoohi, Qiao Chen, Walter Mérida","doi":"10.1016/j.apenergy.2025.126868","DOIUrl":null,"url":null,"abstract":"<div><div>As part of decarbonization strategies, public transit systems are aiming to electrify their fleets in response to climate targets and net-zero goals. However, the resulting increase in electricity demand may lead to energy stress on the electrical grid. Second-life batteries (SLBs) offer a potential solution, yet their financial, energy, and environmental impacts remain underexplored, as does the long-term planning for their integration. This study proposes a strategic planning model for transitioning a public transit fleet to battery electric buses (BEBs), incorporating the deployment of SLBs as a battery energy storage system (BESS). The model jointly optimizes decisions on asset procurement, replacement, route-level fleet assignments, the integration of SLBs as BESS, and the installation of a supporting renewable energy system (RES). A multi-period stochastic programming framework is employed to optimize planning under uncertainties, such as vehicle and battery costs, and the model is formulated as a mixed-integer linear program. A case study of Metro Vancouver's transit system is conducted to evaluate three electrification pathways. Results show that SLBs can meet up to 84 % of the fleet's recharging energy demand, reduce annual operating costs by up to $107 million, and lower total system costs by $78 million. A sensitivity analysis of battery and electricity prices provides insights into the integration of SLBs under different market and policy conditions.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"401 ","pages":"Article 126868"},"PeriodicalIF":11.0000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925015983","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
As part of decarbonization strategies, public transit systems are aiming to electrify their fleets in response to climate targets and net-zero goals. However, the resulting increase in electricity demand may lead to energy stress on the electrical grid. Second-life batteries (SLBs) offer a potential solution, yet their financial, energy, and environmental impacts remain underexplored, as does the long-term planning for their integration. This study proposes a strategic planning model for transitioning a public transit fleet to battery electric buses (BEBs), incorporating the deployment of SLBs as a battery energy storage system (BESS). The model jointly optimizes decisions on asset procurement, replacement, route-level fleet assignments, the integration of SLBs as BESS, and the installation of a supporting renewable energy system (RES). A multi-period stochastic programming framework is employed to optimize planning under uncertainties, such as vehicle and battery costs, and the model is formulated as a mixed-integer linear program. A case study of Metro Vancouver's transit system is conducted to evaluate three electrification pathways. Results show that SLBs can meet up to 84 % of the fleet's recharging energy demand, reduce annual operating costs by up to $107 million, and lower total system costs by $78 million. A sensitivity analysis of battery and electricity prices provides insights into the integration of SLBs under different market and policy conditions.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.