{"title":"A nanowatt oscillator powered only by 68 MeV proton irradiation of a crystalline silicon photodiode pair","authors":"Heinz-Christoph Neitzert , Arpana Singh , Alina Hanna Dittwald , Georgios Kourkafas","doi":"10.1016/j.cap.2025.10.004","DOIUrl":null,"url":null,"abstract":"<div><div>It is shown, that an ultra-low-power voltage controlled oscillator, realized with conventional NAND gates in ring-oscillator configuration, can be operated by a series connected pair of commercial Silicon pin solar cells, only irradiated by a high energy proton beam as power supply. However a very fast degradation of the solar cells is observed, leading to a stop of the oscillator operation after a very short time. By monitoring the oscillator frequency changes when the stack of photodiodes, in this case illuminated with weak ambient light, is not directly exposed to the proton beam but positioned in different positions close to the proton beam, an evaluation of the off-beam-axis irradiation damage could be done. A detailed electrical analysis of the photodiode properties before and after the direct proton irradiation has been added.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 306-310"},"PeriodicalIF":3.1000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925002111","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
It is shown, that an ultra-low-power voltage controlled oscillator, realized with conventional NAND gates in ring-oscillator configuration, can be operated by a series connected pair of commercial Silicon pin solar cells, only irradiated by a high energy proton beam as power supply. However a very fast degradation of the solar cells is observed, leading to a stop of the oscillator operation after a very short time. By monitoring the oscillator frequency changes when the stack of photodiodes, in this case illuminated with weak ambient light, is not directly exposed to the proton beam but positioned in different positions close to the proton beam, an evaluation of the off-beam-axis irradiation damage could be done. A detailed electrical analysis of the photodiode properties before and after the direct proton irradiation has been added.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.