A feature-level ensemble framework for improving daily PM2.5 estimation across the contiguous United States (2000–2023)

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yu Ding, Jiaxin Dong, Mengfan Teng, Shiyao Meng, Jie Yang, Siwei Li
{"title":"A feature-level ensemble framework for improving daily PM2.5 estimation across the contiguous United States (2000–2023)","authors":"Yu Ding, Jiaxin Dong, Mengfan Teng, Shiyao Meng, Jie Yang, Siwei Li","doi":"10.1016/j.envsoft.2025.106733","DOIUrl":null,"url":null,"abstract":"Accurate PM<ce:inf loc=\"post\">2.5</ce:inf> surface concentration estimates are vital for air quality management and exposure assessment. This study introduces a novel feature-level ensemble framework to enhance daily PM<ce:inf loc=\"post\">2.5</ce:inf> estimation across the contiguous United States from 2000 to 2023. The framework integrates multiple XGBoost models trained with diverse temporal features, including calendar encodings and physically derived indicators like rolling averages and change rates from reanalysis PM<ce:inf loc=\"post\">2.5</ce:inf>. By capturing complementary pollution dynamics, the ensemble outperforms models using only calendar features. Under spatial cross-validation, R<ce:sup loc=\"post\">2</ce:sup> increases from 0.64 to 0.70 and RMSE drops from 7.87 to 7.31 μg/m<ce:sup loc=\"post\">3</ce:sup>. Temporal extrapolation also improves, with △R<ce:sup loc=\"post\">2</ce:sup> gains of 0.08 (historical backcasting) and 0.07 (future forecasting). These results demonstrate the framework's robustness, generalizability, and value for long-term PM<ce:inf loc=\"post\">2.5</ce:inf> monitoring, epidemiological research, and data-driven air quality policymaking.","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"116 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envsoft.2025.106733","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate PM2.5 surface concentration estimates are vital for air quality management and exposure assessment. This study introduces a novel feature-level ensemble framework to enhance daily PM2.5 estimation across the contiguous United States from 2000 to 2023. The framework integrates multiple XGBoost models trained with diverse temporal features, including calendar encodings and physically derived indicators like rolling averages and change rates from reanalysis PM2.5. By capturing complementary pollution dynamics, the ensemble outperforms models using only calendar features. Under spatial cross-validation, R2 increases from 0.64 to 0.70 and RMSE drops from 7.87 to 7.31 μg/m3. Temporal extrapolation also improves, with △R2 gains of 0.08 (historical backcasting) and 0.07 (future forecasting). These results demonstrate the framework's robustness, generalizability, and value for long-term PM2.5 monitoring, epidemiological research, and data-driven air quality policymaking.
一个特征级集成框架,用于改善美国相邻地区的每日PM2.5估算(2000-2023)
准确的PM2.5表面浓度估算对于空气质量管理和暴露评估至关重要。本研究引入了一种新的特征级集成框架,以增强2000年至2023年美国相邻地区的每日PM2.5估算。该框架集成了多个经过不同时间特征训练的XGBoost模型,包括日历编码和物理衍生指标,如滚动平均和再分析PM2.5的变化率。通过捕获互补的污染动态,集成优于仅使用日历特征的模型。经空间交叉验证,R2由0.64上升至0.70,RMSE由7.87下降至7.31 μg/m3。时间外推也得到改善,△R2增益为0.08(历史回溯)和0.07(未来预测)。这些结果证明了该框架的稳健性、普遍性以及对PM2.5长期监测、流行病学研究和数据驱动的空气质量政策制定的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信