Solving the fully nonlinear Monge-Ampère equation using the Legendre-Kolmogorov-Arnold network method

IF 3.8 2区 数学 Q1 MATHEMATICS, APPLIED
Bingcheng Hu , Lixiang Jin , Zhaoxiang Li
{"title":"Solving the fully nonlinear Monge-Ampère equation using the Legendre-Kolmogorov-Arnold network method","authors":"Bingcheng Hu ,&nbsp;Lixiang Jin ,&nbsp;Zhaoxiang Li","doi":"10.1016/j.cnsns.2025.109388","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a novel neural network framework, the Legendre-Kolmogorov-Arnold Network (Legendre-KAN) method, designed to solve fully nonlinear Monge-Ampère equations with Dirichlet boundary conditions. The architecture leverages the orthogonality of Legendre polynomials as basis functions, significantly enhancing both convergence speed and solution accuracy compared to traditional methods. Furthermore, the Kolmogorov-Arnold representation theorem provides a strong theoretical foundation for the interpretability and optimization of the network. We demonstrate the effectiveness of the proposed method through numerical examples, involving both smooth and singular solutions in various dimensions. This work not only addresses the challenges of solving high-dimensional and singular Monge-Ampère equations but also highlights the potential of neural network-based approaches for complex partial differential equations. Additionally, the method is applied to the optimal transport problem in image mapping, showcasing its practical utility in geometric image transformation. This approach is expected to pave the way for further enhancement of KAN-based applications and numerical solutions of PDEs across a wide range of scientific and engineering fields.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"152 ","pages":"Article 109388"},"PeriodicalIF":3.8000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100757042500797X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel neural network framework, the Legendre-Kolmogorov-Arnold Network (Legendre-KAN) method, designed to solve fully nonlinear Monge-Ampère equations with Dirichlet boundary conditions. The architecture leverages the orthogonality of Legendre polynomials as basis functions, significantly enhancing both convergence speed and solution accuracy compared to traditional methods. Furthermore, the Kolmogorov-Arnold representation theorem provides a strong theoretical foundation for the interpretability and optimization of the network. We demonstrate the effectiveness of the proposed method through numerical examples, involving both smooth and singular solutions in various dimensions. This work not only addresses the challenges of solving high-dimensional and singular Monge-Ampère equations but also highlights the potential of neural network-based approaches for complex partial differential equations. Additionally, the method is applied to the optimal transport problem in image mapping, showcasing its practical utility in geometric image transformation. This approach is expected to pave the way for further enhancement of KAN-based applications and numerical solutions of PDEs across a wide range of scientific and engineering fields.
利用legende - kolmogorov - arnold网络方法求解全非线性monge - ampantere方程
本文提出了一种新的神经网络框架——legende - kolmogorov - arnold网络(legende - kan)方法,用于求解具有Dirichlet边界条件的全非线性monge - amp方程。该架构利用Legendre多项式的正交性作为基函数,与传统方法相比,显著提高了收敛速度和求解精度。此外,Kolmogorov-Arnold表示定理为网络的可解释性和优化提供了强有力的理论基础。我们通过涉及不同维度的光滑解和奇异解的数值例子证明了所提出方法的有效性。这项工作不仅解决了解决高维和奇异monge - ampantere方程的挑战,而且还强调了基于神经网络的复杂偏微分方程方法的潜力。并将该方法应用于图像映射中的最优传输问题,说明了该方法在几何图像变换中的实用性。这种方法有望为进一步增强基于kan的应用和pde的数值解决方案在广泛的科学和工程领域铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信