Amanda Tritinger , Sydney Crisanti , Steven P. Bailey , Jacob F. Berkowitz , Elizabeth S. Godsey , Burton C. Suedel , Jeffrey K. King
{"title":"Upscaling nature-based solutions for reducing risk from natural hazards: From process to practice","authors":"Amanda Tritinger , Sydney Crisanti , Steven P. Bailey , Jacob F. Berkowitz , Elizabeth S. Godsey , Burton C. Suedel , Jeffrey K. King","doi":"10.1016/j.advwatres.2025.105135","DOIUrl":null,"url":null,"abstract":"<div><div>Nature-based solutions (NbS) offer an innovative approach to reducing risks from natural hazards, aligning ecological processes with engineering objectives. However, successfully scaling NbS from site-specific interventions to systems-level applications remains a challenge. This paper examines an Engineering With Nature® (EWN®) case study to explore how NbS can be integrated into broader, systems-based engineering practices, demonstrating the transition from conceptual design to wide-scale, regional implementation.</div><div>One such case study is Deer Island, located off the coast of Mississippi, USA, where EWN approaches stabilized shorelines and restored critical habitats. The project utilized natural sediment transport processes to rebuild marsh and dune systems, enhancing the island's resilience to storm surges and erosion. Through careful integration of natural and engineered systems, Deer Island serves as a model for how NbS can mitigate risks at both local and regional scales, increasing the ability to recover from a natural disaster and overall ecological health. In particular, the case study highlights the benefit of designing for multiple integrated ecosystem components to deliver a diverse array of ecological functions, goods, and services.</div><div>The paper further underscores the importance of interdisciplinary collaboration, highlighting the role of landscape architects in creating multifunctional designs that incorporate natural features and processes. These designs enhance ecosystem services while addressing societal needs, providing a blueprint for how when combined landscape architecture, science, and engineering can synergize in NbS projects. By synthesizing lessons from the EWN and emphasizing the need for cross-sector collaboration, this paper outlines pathways to scale NbS from localized efforts to comprehensive strategies that reduce coastal storm risk.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"206 ","pages":"Article 105135"},"PeriodicalIF":4.2000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170825002490","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Nature-based solutions (NbS) offer an innovative approach to reducing risks from natural hazards, aligning ecological processes with engineering objectives. However, successfully scaling NbS from site-specific interventions to systems-level applications remains a challenge. This paper examines an Engineering With Nature® (EWN®) case study to explore how NbS can be integrated into broader, systems-based engineering practices, demonstrating the transition from conceptual design to wide-scale, regional implementation.
One such case study is Deer Island, located off the coast of Mississippi, USA, where EWN approaches stabilized shorelines and restored critical habitats. The project utilized natural sediment transport processes to rebuild marsh and dune systems, enhancing the island's resilience to storm surges and erosion. Through careful integration of natural and engineered systems, Deer Island serves as a model for how NbS can mitigate risks at both local and regional scales, increasing the ability to recover from a natural disaster and overall ecological health. In particular, the case study highlights the benefit of designing for multiple integrated ecosystem components to deliver a diverse array of ecological functions, goods, and services.
The paper further underscores the importance of interdisciplinary collaboration, highlighting the role of landscape architects in creating multifunctional designs that incorporate natural features and processes. These designs enhance ecosystem services while addressing societal needs, providing a blueprint for how when combined landscape architecture, science, and engineering can synergize in NbS projects. By synthesizing lessons from the EWN and emphasizing the need for cross-sector collaboration, this paper outlines pathways to scale NbS from localized efforts to comprehensive strategies that reduce coastal storm risk.
期刊介绍:
Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources.
Examples of appropriate topical areas that will be considered include the following:
• Surface and subsurface hydrology
• Hydrometeorology
• Environmental fluid dynamics
• Ecohydrology and ecohydrodynamics
• Multiphase transport phenomena in porous media
• Fluid flow and species transport and reaction processes