Unveiling the HONO Offsetting Effect: Rethinking NOx Emission Controls during Urban Ozone Pollution Episodes

IF 11.3 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Zhen Jiang, Meng-Xue Tang, Li He, Jun-Hong Li, Yi Hong, Ling-Yan He, Xiao-Feng Huang
{"title":"Unveiling the HONO Offsetting Effect: Rethinking NOx Emission Controls during Urban Ozone Pollution Episodes","authors":"Zhen Jiang, Meng-Xue Tang, Li He, Jun-Hong Li, Yi Hong, Ling-Yan He, Xiao-Feng Huang","doi":"10.1021/acs.est.5c04831","DOIUrl":null,"url":null,"abstract":"Conventional ozone (O<sub>3</sub>) control typically targets nitrogen oxides (NO<sub><i>x</i></sub>) and volatile organic compounds (VOCs), yet the role of nitrous acid (HONO) is often overlooked. Here, machine learning (ML)-derived HONO–NO<sub><i>x</i></sub> reduction relationships in the real atmosphere are integrated into the process-based photochemical model (OBM–MCM) to diagnose the sensitivity of the O<sub>3</sub>–NO<sub><i>x</i></sub>–VOCs during high-pollution episodes in Shenzhen, China. OBM simulations constrained by observed HONO show a 95% increase in daytime net O<sub>3</sub> production rates [<i>P</i><sub>net</sub>(O<sub>3</sub>)] compared to the conventional unconstrained case through enhanced OH radical formation that accelerated VOC oxidation and HO<sub>2</sub>/RO<sub>2</sub> + NO pathways. Relative incremental reactivity (RIR) of HONO exhibits a strong anticorrelation with NO<sub><i>x</i></sub> (<i>R</i><sup>2</sup> = 0.86), indicating that a greater NO<sub><i>x</i></sub>-driven increase in the level of O<sub>3</sub> corresponds to a greater HONO-driven decrease in the level of O<sub>3</sub>. ML predicts that a 10% reduction in NO<sub><i>x</i></sub> synchronically results in reducing atmospheric HONO and TVOCs by ∼7.6 and ∼3%, respectively, leading to a shift in <i>P</i><sub>net</sub>(O<sub>3</sub>) from a maximum of 28% increase to a 14% decrease through the reshaping empirical kinetic modeling approach (EKMA), thereby demonstrating that HONO can offset the O<sub>3</sub> increase induced by NO<sub><i>x</i></sub> reduction. These findings challenge traditional EKMA frameworks that NO<sub><i>x</i></sub> control brings adverse effects under VOC-limited regimes, highlighting the feasibility of NO<sub><i>x</i></sub> control strategies when HONO responses are considered.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"79 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.5c04831","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional ozone (O3) control typically targets nitrogen oxides (NOx) and volatile organic compounds (VOCs), yet the role of nitrous acid (HONO) is often overlooked. Here, machine learning (ML)-derived HONO–NOx reduction relationships in the real atmosphere are integrated into the process-based photochemical model (OBM–MCM) to diagnose the sensitivity of the O3–NOx–VOCs during high-pollution episodes in Shenzhen, China. OBM simulations constrained by observed HONO show a 95% increase in daytime net O3 production rates [Pnet(O3)] compared to the conventional unconstrained case through enhanced OH radical formation that accelerated VOC oxidation and HO2/RO2 + NO pathways. Relative incremental reactivity (RIR) of HONO exhibits a strong anticorrelation with NOx (R2 = 0.86), indicating that a greater NOx-driven increase in the level of O3 corresponds to a greater HONO-driven decrease in the level of O3. ML predicts that a 10% reduction in NOx synchronically results in reducing atmospheric HONO and TVOCs by ∼7.6 and ∼3%, respectively, leading to a shift in Pnet(O3) from a maximum of 28% increase to a 14% decrease through the reshaping empirical kinetic modeling approach (EKMA), thereby demonstrating that HONO can offset the O3 increase induced by NOx reduction. These findings challenge traditional EKMA frameworks that NOx control brings adverse effects under VOC-limited regimes, highlighting the feasibility of NOx control strategies when HONO responses are considered.

Abstract Image

揭示HONO抵消效应:重新思考城市臭氧污染时期氮氧化物排放控制
传统的臭氧(O3)控制通常针对氮氧化物(NOx)和挥发性有机化合物(VOCs),但亚硝酸(HONO)的作用往往被忽视。在这里,机器学习(ML)衍生的真实大气中HONO-NOx还原关系被整合到基于过程的光化学模型(OBM-MCM)中,以诊断中国深圳高污染时期O3-NOx-VOCs的敏感性。受观测到的HONO约束的OBM模拟显示,与常规无约束情况相比,通过增强OH自由基的形成,加速VOC氧化和HO2/RO2 + NO途径,白天净O3产率[Pnet(O3)]增加了95%。HONO的相对增量反应性(RIR)与NOx呈较强的负相关关系(R2 = 0.86),表明NOx驱动的O3水平增加越大,HONO驱动的O3水平降低越大。ML预测,通过重塑经验动力学建模方法(EKMA), NOx减少10%同步导致大气HONO和TVOCs分别减少约7.6和约3%,导致Pnet(O3)从最大增加28%转变为减少14%,从而证明HONO可以抵消NOx减少引起的O3增加。这些发现挑战了传统的EKMA框架,即氮氧化物控制在voc限制制度下会带来不利影响,强调了考虑HONO响应时氮氧化物控制策略的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信