Toward a Sustainable Future: A Holistic Environmental, Social, and Economic Assessment of Industrial Recycling for All-Solid-State Batteries with Oxide-Based Electrolytes
{"title":"Toward a Sustainable Future: A Holistic Environmental, Social, and Economic Assessment of Industrial Recycling for All-Solid-State Batteries with Oxide-Based Electrolytes","authors":"Ziyu Wang, , , Xuelin Tian, , , Shan Zhao, , , Peng Zhang, , and , Chunjiang An*, ","doi":"10.1021/acs.est.5c12122","DOIUrl":null,"url":null,"abstract":"<p >The increasing demand for lithium-ion batteries has raised concerns about resource scarcity, battery accident risks, and end-of-life battery management. All-solid-state batteries (ASSBs) are emerging as a promising alternative due to their higher energy density and thermal stability. However, the large-scale production of ASSBs necessitates the development of sustainable recycling strategies to address resource constraints and environmental challenges. This study proposes an innovative framework integrating life cycle assessment (LCA) and multicriteria decision analysis (MCDA) to evaluate the environmental, social, and economic performance of three recycling methods, pyrometallurgy, hydrometallurgy, and direct recycling, for two types of oxide-based ASSBs (with LLZO and LATP electrolytes). The results indicate that hydrometallurgical recycling, particularly for LLZO batteries, offers the most sustainable solution by balancing environmental benefits, social impact, and cost-effectiveness. Direct recycling, while economically advantageous, faces technical uncertainties. Sensitivity and uncertainty analyses further validate the robustness of the findings, providing a comprehensive decision-making tool for future battery disposal strategies.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"59 41","pages":"21957–21966"},"PeriodicalIF":11.3000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.5c12122","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing demand for lithium-ion batteries has raised concerns about resource scarcity, battery accident risks, and end-of-life battery management. All-solid-state batteries (ASSBs) are emerging as a promising alternative due to their higher energy density and thermal stability. However, the large-scale production of ASSBs necessitates the development of sustainable recycling strategies to address resource constraints and environmental challenges. This study proposes an innovative framework integrating life cycle assessment (LCA) and multicriteria decision analysis (MCDA) to evaluate the environmental, social, and economic performance of three recycling methods, pyrometallurgy, hydrometallurgy, and direct recycling, for two types of oxide-based ASSBs (with LLZO and LATP electrolytes). The results indicate that hydrometallurgical recycling, particularly for LLZO batteries, offers the most sustainable solution by balancing environmental benefits, social impact, and cost-effectiveness. Direct recycling, while economically advantageous, faces technical uncertainties. Sensitivity and uncertainty analyses further validate the robustness of the findings, providing a comprehensive decision-making tool for future battery disposal strategies.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.