Woo Young Kim,Seong Min Yoon,Seo Rim Park,Myung Seo Kim,Sang Hoon Lee,Su Hyun Choi,Seungwoo Shin,Sin Kwon,Chang Jong Kim,Kwang Min Lee,Sang-Hoon Nam,Soochan Bae,Peter M Kang,Nicholas X Fang,Seok Kim,Young Tae Cho
{"title":"Digitally fabricated 3D slippery architectures for multifunctional liquid manipulation.","authors":"Woo Young Kim,Seong Min Yoon,Seo Rim Park,Myung Seo Kim,Sang Hoon Lee,Su Hyun Choi,Seungwoo Shin,Sin Kwon,Chang Jong Kim,Kwang Min Lee,Sang-Hoon Nam,Soochan Bae,Peter M Kang,Nicholas X Fang,Seok Kim,Young Tae Cho","doi":"10.1038/s41467-025-64078-7","DOIUrl":null,"url":null,"abstract":"The primary challenge in creating controllable liquid-based materials lies in managing the structural complexities and multiscale interfaces that govern solid, liquid, and gas phase interactions. Current fabrication methods for liquid-infused surfaces lack topological flexibility, limiting them to planar and simple-patterned structures. Conversely, digitally fabricating slippery architectural materials marks a significant shift towards scalable microprinting of complex, topologically slippery designs. This paper introduces a method for digitally fabricating slippery objects with solid-liquid composite interfaces and geometric design freedom. The slippery architecture has been demonstrated through digital printing of photopolymerization-induced multiphase materials and photoinduced grafting, enabling precise control over structural topologies and slippery properties of infused liquids. This versatile platform facilitates the fabrication of structures at multiple scales, enhancing liquid manipulation, droplet evaporation, and biomedical microfluidic chip design. These methods advance beyond conventional techniques, showcasing the potential of architected slippery surfaces with controlled structural scales.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"14 1","pages":"9026"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64078-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The primary challenge in creating controllable liquid-based materials lies in managing the structural complexities and multiscale interfaces that govern solid, liquid, and gas phase interactions. Current fabrication methods for liquid-infused surfaces lack topological flexibility, limiting them to planar and simple-patterned structures. Conversely, digitally fabricating slippery architectural materials marks a significant shift towards scalable microprinting of complex, topologically slippery designs. This paper introduces a method for digitally fabricating slippery objects with solid-liquid composite interfaces and geometric design freedom. The slippery architecture has been demonstrated through digital printing of photopolymerization-induced multiphase materials and photoinduced grafting, enabling precise control over structural topologies and slippery properties of infused liquids. This versatile platform facilitates the fabrication of structures at multiple scales, enhancing liquid manipulation, droplet evaporation, and biomedical microfluidic chip design. These methods advance beyond conventional techniques, showcasing the potential of architected slippery surfaces with controlled structural scales.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.