Digitally fabricated 3D slippery architectures for multifunctional liquid manipulation.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Woo Young Kim,Seong Min Yoon,Seo Rim Park,Myung Seo Kim,Sang Hoon Lee,Su Hyun Choi,Seungwoo Shin,Sin Kwon,Chang Jong Kim,Kwang Min Lee,Sang-Hoon Nam,Soochan Bae,Peter M Kang,Nicholas X Fang,Seok Kim,Young Tae Cho
{"title":"Digitally fabricated 3D slippery architectures for multifunctional liquid manipulation.","authors":"Woo Young Kim,Seong Min Yoon,Seo Rim Park,Myung Seo Kim,Sang Hoon Lee,Su Hyun Choi,Seungwoo Shin,Sin Kwon,Chang Jong Kim,Kwang Min Lee,Sang-Hoon Nam,Soochan Bae,Peter M Kang,Nicholas X Fang,Seok Kim,Young Tae Cho","doi":"10.1038/s41467-025-64078-7","DOIUrl":null,"url":null,"abstract":"The primary challenge in creating controllable liquid-based materials lies in managing the structural complexities and multiscale interfaces that govern solid, liquid, and gas phase interactions. Current fabrication methods for liquid-infused surfaces lack topological flexibility, limiting them to planar and simple-patterned structures. Conversely, digitally fabricating slippery architectural materials marks a significant shift towards scalable microprinting of complex, topologically slippery designs. This paper introduces a method for digitally fabricating slippery objects with solid-liquid composite interfaces and geometric design freedom. The slippery architecture has been demonstrated through digital printing of photopolymerization-induced multiphase materials and photoinduced grafting, enabling precise control over structural topologies and slippery properties of infused liquids. This versatile platform facilitates the fabrication of structures at multiple scales, enhancing liquid manipulation, droplet evaporation, and biomedical microfluidic chip design. These methods advance beyond conventional techniques, showcasing the potential of architected slippery surfaces with controlled structural scales.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"14 1","pages":"9026"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64078-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The primary challenge in creating controllable liquid-based materials lies in managing the structural complexities and multiscale interfaces that govern solid, liquid, and gas phase interactions. Current fabrication methods for liquid-infused surfaces lack topological flexibility, limiting them to planar and simple-patterned structures. Conversely, digitally fabricating slippery architectural materials marks a significant shift towards scalable microprinting of complex, topologically slippery designs. This paper introduces a method for digitally fabricating slippery objects with solid-liquid composite interfaces and geometric design freedom. The slippery architecture has been demonstrated through digital printing of photopolymerization-induced multiphase materials and photoinduced grafting, enabling precise control over structural topologies and slippery properties of infused liquids. This versatile platform facilitates the fabrication of structures at multiple scales, enhancing liquid manipulation, droplet evaporation, and biomedical microfluidic chip design. These methods advance beyond conventional techniques, showcasing the potential of architected slippery surfaces with controlled structural scales.
用于多功能液体操作的数字制造3D光滑结构。
创建可控液体基材料的主要挑战在于管理结构复杂性和控制固、液、气相相互作用的多尺度界面。目前液体注入表面的制造方法缺乏拓扑灵活性,限制了它们的平面和简单的图案结构。相反,数字化制造光滑的建筑材料标志着向复杂的、拓扑光滑的设计的可扩展微印刷的重大转变。介绍了一种具有固液复合界面和几何设计自由度的光滑物体的数字化制造方法。通过光聚合诱导多相材料的数字印刷和光诱导接枝,可以精确控制注入液体的结构拓扑和光滑性。这个多功能平台促进了多尺度结构的制造,增强了液体操作,液滴蒸发和生物医学微流控芯片的设计。这些方法超越了传统技术,展示了具有可控结构尺度的结构光滑表面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信