Weian Cao,Junfan Chen,Yutong Fu,Haitao Jiang,Yu Gao,Huiming Huang,Yang-Xin Fu,Wenyan Wang
{"title":"A next-generation anti-CTLA-4 probody mitigates toxicity and enhances anti-tumor immunity in mice.","authors":"Weian Cao,Junfan Chen,Yutong Fu,Haitao Jiang,Yu Gao,Huiming Huang,Yang-Xin Fu,Wenyan Wang","doi":"10.1038/s41467-025-64081-y","DOIUrl":null,"url":null,"abstract":"CTLA-4 is a promising target for immune checkpoint inhibition in cancer therapy, with CTLA-4 blockade achieving prolonged overall survival for responding patients. However, the progressively elevated doses of anti-CTLA-4 agents, aimed at achieving better efficacy, result in increased toxicities, limiting their clinical applications. Here, we generate a prodrug design of the anti-CTLA-4 antibody, named ProCTLA-4, by folding the Fab fragment of the antibody in a tumor-associated protease-based manner. In preclinical mouse models, ProCTLA-4 effectively depletes suppressive regulatory T cells within the tumor microenvironment and enhances tumor-associated antigen-specific CD8+ T cell responses, while exhibiting reduced toxicity compared to currently available CTLA-4 blockade approaches. Furthermore, compared to the currently used Probody therapeutics for anti-CTLA-4 (BMS986288), ProCTLA-4 has more advantages in efficacy amplification, such as in poor immunogenic melanoma. Our design establishes an alternative paradigm for antibody agents that limits the emergence of immune-related adverse events (irAE) while increasing therapeutic efficacy.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"39 1","pages":"9029"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64081-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
CTLA-4 is a promising target for immune checkpoint inhibition in cancer therapy, with CTLA-4 blockade achieving prolonged overall survival for responding patients. However, the progressively elevated doses of anti-CTLA-4 agents, aimed at achieving better efficacy, result in increased toxicities, limiting their clinical applications. Here, we generate a prodrug design of the anti-CTLA-4 antibody, named ProCTLA-4, by folding the Fab fragment of the antibody in a tumor-associated protease-based manner. In preclinical mouse models, ProCTLA-4 effectively depletes suppressive regulatory T cells within the tumor microenvironment and enhances tumor-associated antigen-specific CD8+ T cell responses, while exhibiting reduced toxicity compared to currently available CTLA-4 blockade approaches. Furthermore, compared to the currently used Probody therapeutics for anti-CTLA-4 (BMS986288), ProCTLA-4 has more advantages in efficacy amplification, such as in poor immunogenic melanoma. Our design establishes an alternative paradigm for antibody agents that limits the emergence of immune-related adverse events (irAE) while increasing therapeutic efficacy.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.