LARGE1 processively polymerizes length-controlled matriglycan on prodystroglycan.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Soumya Joseph,Nicholas J Schnicker,Nicholas Spellmon,Zhen Xu,Rui Yan,Zhiheng Yu,Omar Davulcu,Tiandi Yang,Jesse Hopkins,Mary E Anderson,David Venzke,Kevin P Campbell
{"title":"LARGE1 processively polymerizes length-controlled matriglycan on prodystroglycan.","authors":"Soumya Joseph,Nicholas J Schnicker,Nicholas Spellmon,Zhen Xu,Rui Yan,Zhiheng Yu,Omar Davulcu,Tiandi Yang,Jesse Hopkins,Mary E Anderson,David Venzke,Kevin P Campbell","doi":"10.1038/s41467-025-64080-z","DOIUrl":null,"url":null,"abstract":"Matriglycan is a linear glycan (xylose-β1,3-glucuronate)n, which binds proteins in the extracellular matrix that contain laminin-globular domains and Lassa Fever Virus. It is indispensable for neuromuscular function. Matriglycan of insufficient length can cause muscular dystrophy with abnormal brain and eye development. LARGE1 (Like-acetylglucosaminyltransferase-1) uniquely synthesizes matriglycan on dystroglycan. The mechanism of matriglycan synthesis is not obvious from cryo-EM reconstructions of LARGE1. However, by reconstituting activity in vitro on recombinant prodystroglycan we show that the presence of the dystroglycan N-terminal domain (DGN), phosphorylated core M3, and a xylose-glucuronate primer are necessary for matriglycan polymerization by LARGE1. By introducing active site mutations, we demonstrate that LARGE1 processively polymerizes matriglycan on prodystroglycan, with its length regulated by the dystroglycan prodomain, DGN. Our enzymatic analysis of LARGE1 uncovers the mechanism of matriglycan synthesis on dystroglycan, which can form the basis for therapeutic strategies to treat matriglycan-deficient neuromuscular disorders and arenaviral infections.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"8 1","pages":"9028"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64080-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Matriglycan is a linear glycan (xylose-β1,3-glucuronate)n, which binds proteins in the extracellular matrix that contain laminin-globular domains and Lassa Fever Virus. It is indispensable for neuromuscular function. Matriglycan of insufficient length can cause muscular dystrophy with abnormal brain and eye development. LARGE1 (Like-acetylglucosaminyltransferase-1) uniquely synthesizes matriglycan on dystroglycan. The mechanism of matriglycan synthesis is not obvious from cryo-EM reconstructions of LARGE1. However, by reconstituting activity in vitro on recombinant prodystroglycan we show that the presence of the dystroglycan N-terminal domain (DGN), phosphorylated core M3, and a xylose-glucuronate primer are necessary for matriglycan polymerization by LARGE1. By introducing active site mutations, we demonstrate that LARGE1 processively polymerizes matriglycan on prodystroglycan, with its length regulated by the dystroglycan prodomain, DGN. Our enzymatic analysis of LARGE1 uncovers the mechanism of matriglycan synthesis on dystroglycan, which can form the basis for therapeutic strategies to treat matriglycan-deficient neuromuscular disorders and arenaviral infections.
LARGE1在原三磷酸聚糖上进行长度控制的基质聚糖的程序性聚合。
Matriglycan是一种线性聚糖(木糖-β1,3-葡萄糖醛酸)n,它结合细胞外基质中含有层粘连蛋白球形结构域和拉沙热病毒的蛋白质。它是神经肌肉功能不可缺少的。基质长度不足可引起肌肉萎缩,并伴有脑和眼发育异常。LARGE1 (Like-acetylglucosaminyltransferase-1)独特地在三聚糖聚糖上合成基质聚糖。从LARGE1的低温电镜重构来看,基质聚糖的合成机理并不明显。然而,通过体外重组原三磷酸甘聚糖的活性,我们发现三磷酸甘聚糖n端结构域(DGN)、磷酸化的核心M3和木糖糖-葡萄糖酸盐引物是LARGE1聚合基质甘聚糖的必要条件。通过引入活性位点突变,我们证明了LARGE1在原三聚糖聚糖上进行基质聚糖的持续聚合,其长度由三聚糖聚糖原结构域DGN调节。我们对LARGE1的酶促分析揭示了基质多糖在三聚糖聚糖上合成的机制,这可以为治疗基质多糖缺乏的神经肌肉疾病和沙粒病毒感染提供治疗策略的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信