Subhashree Panda, Luis Schnürer, Alisa Machner, Luis Ruiz Pestana, Prannoy Suraneni
{"title":"CO2 uptake in calcium aluminosilicate materials","authors":"Subhashree Panda, Luis Schnürer, Alisa Machner, Luis Ruiz Pestana, Prannoy Suraneni","doi":"10.1016/j.cemconres.2025.108056","DOIUrl":null,"url":null,"abstract":"CO<sub>2</sub> mineralization has gained increasing attention as a strategy to reduce emissions from concrete production. This study investigates the carbonation potential of several calcium aluminosilicate (CAS) materials, model systems for understanding supplementary cementitious materials (SCMs). CAS materials were synthesized at temperatures ranging from 1000 °C to 1600 °C, producing structures ranging from partially crystalline to fully amorphous. X-ray diffraction and scanning electron microscopy were used to understand material physicochemical properties. Carbonation potential was assessed through CO<sub>2</sub> uptake measurements using thermogravimetric analysis and Fourier-transform infrared spectroscopy, while SCM reactivity was evaluated via a modified R<sup>3</sup> test. Results show that materials synthesized at 1000 °C and 1200 °C, containing unreacted oxides, portlandite, CA, and C<sub>2</sub>S, exhibited the highest CO<sub>2</sub> uptake but the lowest reactivity as SCM. In contrast, fully amorphous glasses synthesized at 1600 °C demonstrated significantly higher SCM reactivity but minimal CO<sub>2</sub> uptake. These findings highlight a fundamental trade-off between their reactivity and carbonation potential, governed by the degree of amorphization.","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"2 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cemconres.2025.108056","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
CO2 mineralization has gained increasing attention as a strategy to reduce emissions from concrete production. This study investigates the carbonation potential of several calcium aluminosilicate (CAS) materials, model systems for understanding supplementary cementitious materials (SCMs). CAS materials were synthesized at temperatures ranging from 1000 °C to 1600 °C, producing structures ranging from partially crystalline to fully amorphous. X-ray diffraction and scanning electron microscopy were used to understand material physicochemical properties. Carbonation potential was assessed through CO2 uptake measurements using thermogravimetric analysis and Fourier-transform infrared spectroscopy, while SCM reactivity was evaluated via a modified R3 test. Results show that materials synthesized at 1000 °C and 1200 °C, containing unreacted oxides, portlandite, CA, and C2S, exhibited the highest CO2 uptake but the lowest reactivity as SCM. In contrast, fully amorphous glasses synthesized at 1600 °C demonstrated significantly higher SCM reactivity but minimal CO2 uptake. These findings highlight a fundamental trade-off between their reactivity and carbonation potential, governed by the degree of amorphization.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.