Long-Life Lithium Metal Batteries Enabled by In Situ Solidified Polyphosphoester-Based Electrolyte.

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yimou Wang,Shu Zhang,Zhou Chen,Huanrui Zhang,Fayou Tian,Jiakai Wang,Yuanyuan Zhu,Guangxu Yang,Zhongtao Li,Guanglei Cui
{"title":"Long-Life Lithium Metal Batteries Enabled by In Situ Solidified Polyphosphoester-Based Electrolyte.","authors":"Yimou Wang,Shu Zhang,Zhou Chen,Huanrui Zhang,Fayou Tian,Jiakai Wang,Yuanyuan Zhu,Guangxu Yang,Zhongtao Li,Guanglei Cui","doi":"10.1002/adma.202514210","DOIUrl":null,"url":null,"abstract":"The practical application of lithium metal batteries (LMBs) is hindered by the imbalanced periodic oscillatory distribution of cations/anions in liquid electrolytes (LEs) and thus the formed mechanically vulnerable solid electrolyte interphase (SEI), which collectively exacerbate lithium (Li) dendrite formation and degrade electrochemical stability. To overcome these issues, a polyphosphoester electrolyte (PPUM-PE) is designed through a dual-ion regulation strategy. The ‒NH‒ moieties in PPUM polymer effectively anchor anions, while its P═O/C═O functional groups reconstruct Li+ solvation architecture, collectively enabling an exceptional Li+ transference number (0.82) and improved reductive stability of the solvation sheath. A bilayer SEI layer formed on Li anodes-composed of an outer lithium-containing alkyl phosphate polymer and an inner LiF-enriched inorganic phase-exhibits high Young's modulus, effectively suppressing Li dendrite propagation and continuous electrolyte decomposition. Impressively, the as-assembled LMBs employing LiFePO4 cathodes retain 91.28% capacity retention after 1000 cycles at 1C. The electrolyte also demonstrates good compatibility with high-voltage cathodes (LiCoO2, LiNi0.8Co0.1Mn0.1O2) and substantially improves battery thermal safety. This dual-ion synergistic regulation provides a scalable pathway toward high-energy-density LMBs.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"115 1","pages":"e14210"},"PeriodicalIF":26.8000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202514210","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The practical application of lithium metal batteries (LMBs) is hindered by the imbalanced periodic oscillatory distribution of cations/anions in liquid electrolytes (LEs) and thus the formed mechanically vulnerable solid electrolyte interphase (SEI), which collectively exacerbate lithium (Li) dendrite formation and degrade electrochemical stability. To overcome these issues, a polyphosphoester electrolyte (PPUM-PE) is designed through a dual-ion regulation strategy. The ‒NH‒ moieties in PPUM polymer effectively anchor anions, while its P═O/C═O functional groups reconstruct Li+ solvation architecture, collectively enabling an exceptional Li+ transference number (0.82) and improved reductive stability of the solvation sheath. A bilayer SEI layer formed on Li anodes-composed of an outer lithium-containing alkyl phosphate polymer and an inner LiF-enriched inorganic phase-exhibits high Young's modulus, effectively suppressing Li dendrite propagation and continuous electrolyte decomposition. Impressively, the as-assembled LMBs employing LiFePO4 cathodes retain 91.28% capacity retention after 1000 cycles at 1C. The electrolyte also demonstrates good compatibility with high-voltage cathodes (LiCoO2, LiNi0.8Co0.1Mn0.1O2) and substantially improves battery thermal safety. This dual-ion synergistic regulation provides a scalable pathway toward high-energy-density LMBs.
原位固化聚磷酸酯基电解质实现长寿命锂金属电池。
锂金属电池(lmb)的实际应用受到液体电解质(LEs)中阳离子/阴离子周期性振荡分布不平衡的阻碍,从而形成机械上脆弱的固体电解质界面(SEI),共同加剧了锂(Li)枝晶的形成,降低了电化学稳定性。为了克服这些问题,通过双离子调节策略设计了聚磷酸酯电解质(PPUM-PE)。PPUM聚合物中的- nh3 -基团有效地锚定阴离子,而其P = O/C = O官能团重构Li+溶剂化结构,共同实现了一个特殊的Li+转移数(0.82),并提高了溶剂化鞘的还原稳定性。在锂阳极上形成由外部含锂的磷酸烷基聚合物和内部富锂无机相组成的双层SEI层,其杨氏模量高,有效抑制了锂枝晶的扩展和电解质的连续分解。令人印象深刻的是,使用LiFePO4阴极组装的lmb在1C下循环1000次后仍保持91.28%的容量。该电解质与高压阴极(LiCoO2、LiNi0.8Co0.1Mn0.1O2)也表现出良好的相容性,大大提高了电池的热安全性。这种双离子协同调节为高能量密度lmb提供了可扩展的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信