{"title":"Reprogrammable snapping morphogenesis in ribbon-cluster meta-units using stored elastic energy.","authors":"Yaoye Hong,Caizhi Zhou,Haitao Qing,Yinding Chi,Jie Yin","doi":"10.1038/s41563-025-02370-z","DOIUrl":null,"url":null,"abstract":"Snapping, driven by stored elastic energy, enables versatile and rapid shape changes in nature; yet replicating such autonomous, reprogrammable morphogenesis in free-standing volumetric structures remains elusive. Here we report a lantern-shaped ribbon-cluster meta-unit that harnesses programmable and reprogrammable elastic energy to achieve over 13 distinct volumetric snapping morphologies from a single unit. Governed by three Euler angles, the meta-unit post-fabrication offers a tunable mechanical design space spanning up to quadrastable states. Unlike single-ribbon or mechanism-based designs, our system autonomously selects snapping pathways via nastic coupling between multiple ribbons, enabling the inverse design of complex snapping morphologies. We harness magnetically actuated bud-to-bloom and tristable morphogenesis to enable fast, non-invasive grasping and remote flow regulation in confined environments. These results establish a general framework for architected materials with programmable shape, stability and function, offering potential applications in soft robotics, deployable devices and mechanical logic.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"2 1","pages":""},"PeriodicalIF":38.5000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02370-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Snapping, driven by stored elastic energy, enables versatile and rapid shape changes in nature; yet replicating such autonomous, reprogrammable morphogenesis in free-standing volumetric structures remains elusive. Here we report a lantern-shaped ribbon-cluster meta-unit that harnesses programmable and reprogrammable elastic energy to achieve over 13 distinct volumetric snapping morphologies from a single unit. Governed by three Euler angles, the meta-unit post-fabrication offers a tunable mechanical design space spanning up to quadrastable states. Unlike single-ribbon or mechanism-based designs, our system autonomously selects snapping pathways via nastic coupling between multiple ribbons, enabling the inverse design of complex snapping morphologies. We harness magnetically actuated bud-to-bloom and tristable morphogenesis to enable fast, non-invasive grasping and remote flow regulation in confined environments. These results establish a general framework for architected materials with programmable shape, stability and function, offering potential applications in soft robotics, deployable devices and mechanical logic.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.