Crystalline‐Amorphous Heterostructures with Built‐In Electric Fields Enhance the Tandem Electroreduction of Nitrate to Ammonia

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yaling Chen, Xiang Liu, Shiyu Li, Jianjun Li, Mengyang Fan, Song Shu
{"title":"Crystalline‐Amorphous Heterostructures with Built‐In Electric Fields Enhance the Tandem Electroreduction of Nitrate to Ammonia","authors":"Yaling Chen, Xiang Liu, Shiyu Li, Jianjun Li, Mengyang Fan, Song Shu","doi":"10.1002/adfm.202521409","DOIUrl":null,"url":null,"abstract":"Electrochemical nitrate reduction to ammonia (NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>RR) presents dual opportunities for sustainable ammonia synthesis and environmental nitrate remediation. However, the catalytic efficiency of the NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>RR is hindered by the slow kinetics and substantial side reactions. Herein, a crystal‐amorphous (c‐a) heterostructure catalyst, c‐Co<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>/a‐CuO is reported, that delivers an NH<jats:sub>3</jats:sub> yield rate of 412.5 µmol h<jats:sup>−1</jats:sup> mg<jats:sup>−1</jats:sup> and a Faradaic efficiency of 90% at−0.8 V<jats:sub>RHE</jats:sub> in neutral electrolyte. Specifically, the catalyst operates via a tandem catalysis pathway: a‐CuO facilitates the initial adsorption and deoxygenation of NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> to promote <jats:sup>*</jats:sup>NO<jats:sub>2</jats:sub> formation, while the resulting <jats:sup>*</jats:sup>NO<jats:sub>2</jats:sub> species are subsequently converted to NH<jats:sub>3</jats:sub> at the c‐Co<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> sites. Structural and spectroscopic analyses further reveal that the c‐a interface induces charge redistribution and built‐in electric fields, accelerating electron transfer and lowering the energy barrier of the rate‐determining step. Moreover, integration of the c‐Co<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>/a‐CuO into a Zn‐NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> battery demonstrates simultaneous environmental remediation, energy storage, and sustainable NH<jats:sub>3</jats:sub> synthesis.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"40 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202521409","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical nitrate reduction to ammonia (NO3RR) presents dual opportunities for sustainable ammonia synthesis and environmental nitrate remediation. However, the catalytic efficiency of the NO3RR is hindered by the slow kinetics and substantial side reactions. Herein, a crystal‐amorphous (c‐a) heterostructure catalyst, c‐Co3O4/a‐CuO is reported, that delivers an NH3 yield rate of 412.5 µmol h−1 mg−1 and a Faradaic efficiency of 90% at−0.8 VRHE in neutral electrolyte. Specifically, the catalyst operates via a tandem catalysis pathway: a‐CuO facilitates the initial adsorption and deoxygenation of NO3 to promote *NO2 formation, while the resulting *NO2 species are subsequently converted to NH3 at the c‐Co3O4 sites. Structural and spectroscopic analyses further reveal that the c‐a interface induces charge redistribution and built‐in electric fields, accelerating electron transfer and lowering the energy barrier of the rate‐determining step. Moreover, integration of the c‐Co3O4/a‐CuO into a Zn‐NO3 battery demonstrates simultaneous environmental remediation, energy storage, and sustainable NH3 synthesis.
内置电场的结晶-非晶异质结构增强了硝酸盐的串联电还原制氨
电化学硝酸还原为氨(NO3−RR)提供了可持续氨合成和环境硝酸盐修复的双重机会。然而,NO3−RR的催化效率受到动力学缓慢和大量副反应的影响。本文报道了一种晶体-非晶(c‐a)异质结构催化剂,c‐Co3O4/a‐CuO,在中性电解质中,在−0.8 VRHE下,NH3产率为412.5µmol h - 1 mg - 1,法拉第效率为90%。具体来说,该催化剂通过串联催化途径起作用:a‐CuO促进NO3−的初始吸附和脱氧,促进*NO2的形成,而产生的*NO2随后在c‐Co3O4位点转化为NH3。结构和光谱分析进一步表明,c - a界面诱导电荷再分配和内置电场,加速电子转移并降低速率决定步骤的能量势垒。此外,将c‐Co3O4/a‐CuO整合到Zn‐NO3 -电池中可以同时实现环境修复、能量储存和可持续的NH3合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信