Synergistic Molecular Engineering of Crosslinked Polymer Dielectrics for High‐Temperature Capacitive Energy Storage

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yan He, Quan Sun, Rui Xue, Qi Wang, Aijiao Guan, Pingxia Zhang, Jingcheng Xu, Zhaoyu Ran, Qi Li, Wenxin Fu
{"title":"Synergistic Molecular Engineering of Crosslinked Polymer Dielectrics for High‐Temperature Capacitive Energy Storage","authors":"Yan He, Quan Sun, Rui Xue, Qi Wang, Aijiao Guan, Pingxia Zhang, Jingcheng Xu, Zhaoyu Ran, Qi Li, Wenxin Fu","doi":"10.1002/adma.202513483","DOIUrl":null,"url":null,"abstract":"Polymer dielectric capacitors are critical for high‐temperature energy storage, yet current materials face a trade‐off between thermal stability and capacitive performance due to conduction loss or insufficient polarization. Here, a modular molecular engineering to simultaneously optimize molecular polarity, topological crosslinking, and free volume in alicyclic polymers is designed. By incorporating thermally crosslinkable benzocyclobutene (BCB) and sulfone‐methyl (─SO<jats:sub>2</jats:sub>CH<jats:sub>3</jats:sub>) groups into norbornene‐based monomers via ring‐opening metathesis polymerization (ROMP), crosslinked networks with decoupled non‐conjugated backbones and polar moieties are constructed. The polymers exhibit a wide optical bandgap (<jats:italic>E</jats:italic><jats:sub>g</jats:sub> &gt; 3.7 eV), high thermal stability (<jats:italic>T</jats:italic><jats:sub>g</jats:sub> &gt; 350 °C), and suppressed dissipation (<jats:italic>D</jats:italic><jats:sub>f</jats:sub> ≈ 0.0006). Optimized P50‐B250 delivers an exceptional discharged energy density (<jats:italic>U</jats:italic><jats:sub>d</jats:sub>) of 8.00 J cm<jats:sup>−3</jats:sup> at 150 °C (≥90% efficiency), while fully crosslinked P0‐B300 retained <jats:italic>U</jats:italic><jats:sub>d</jats:sub> of 7.34 J cm<jats:sup>−3</jats:sup> at 200 °C and 4.65 J cm<jats:sup>−3</jats:sup> at 250 °C, outperforming conventional dielectrics. Molecular dynamics (MD) simulations revealed that crosslinking increases free volume fraction by ≈40%, inhibiting interchain charge transfer complexes (CTCs). Density functional theory (DFT) calculations confirm that sulfonyl‐enhanced polarization and crosslinking collectively restrict charge migration. This work establishes a general framework for designing polymer dielectrics by integrating structural modularity and topological control, offering pathways for next‐generation energy storage applications under extreme conditions.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"40 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202513483","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer dielectric capacitors are critical for high‐temperature energy storage, yet current materials face a trade‐off between thermal stability and capacitive performance due to conduction loss or insufficient polarization. Here, a modular molecular engineering to simultaneously optimize molecular polarity, topological crosslinking, and free volume in alicyclic polymers is designed. By incorporating thermally crosslinkable benzocyclobutene (BCB) and sulfone‐methyl (─SO2CH3) groups into norbornene‐based monomers via ring‐opening metathesis polymerization (ROMP), crosslinked networks with decoupled non‐conjugated backbones and polar moieties are constructed. The polymers exhibit a wide optical bandgap (Eg > 3.7 eV), high thermal stability (Tg > 350 °C), and suppressed dissipation (Df ≈ 0.0006). Optimized P50‐B250 delivers an exceptional discharged energy density (Ud) of 8.00 J cm−3 at 150 °C (≥90% efficiency), while fully crosslinked P0‐B300 retained Ud of 7.34 J cm−3 at 200 °C and 4.65 J cm−3 at 250 °C, outperforming conventional dielectrics. Molecular dynamics (MD) simulations revealed that crosslinking increases free volume fraction by ≈40%, inhibiting interchain charge transfer complexes (CTCs). Density functional theory (DFT) calculations confirm that sulfonyl‐enhanced polarization and crosslinking collectively restrict charge migration. This work establishes a general framework for designing polymer dielectrics by integrating structural modularity and topological control, offering pathways for next‐generation energy storage applications under extreme conditions.
高温电容储能用交联聚合物介质的协同分子工程
聚合物介质电容器对于高温储能至关重要,但由于传导损失或极化不足,目前的材料面临热稳定性和电容性能之间的权衡。本文设计了一种模块化分子工程,可同时优化脂环聚合物的分子极性、拓扑交联和自由体积。通过开环复分解聚合(ROMP)将可热交联的苯并环丁烯(BCB)和磺甲基(SO2CH3)基团结合到降冰片烯基单体中,构建了具有去耦非共轭骨架和极性部分的交联网络。该聚合物具有宽的光学带隙(Eg > 3.7 eV),高的热稳定性(Tg > 350℃)和抑制的耗散(Df≈0.0006)。优化后的P50‐B250在150°C时的放电能量密度(Ud)为8.00 J cm−3(效率≥90%),而完全交联的P0‐B300在200°C和250°C时的放电能量密度分别为7.34 J cm−3和4.65 J cm−3,优于传统的电介质。分子动力学(MD)模拟表明,交联使自由体积分数增加了约40%,抑制了链间电荷转移配合物(ctc)。密度泛函理论(DFT)计算证实,磺酰基增强极化和交联共同限制了电荷迁移。这项工作通过集成结构模块化和拓扑控制,为设计聚合物电介质建立了一个总体框架,为极端条件下的下一代储能应用提供了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信