EpiClock; biological age measurement from blood DNA methylation using a minimal CpG marker set for high-throughput iPlex mass spectrometry assay for screening in drug development and population health.

IF 4.3
Hyojung Kim, Ah-Hyun Park, Minjae Kwon, Kyoung Joo Lee, Min-Jeong Kim, Min-Seob Lee
{"title":"EpiClock; biological age measurement from blood DNA methylation using a minimal CpG marker set for high-throughput iPlex mass spectrometry assay for screening in drug development and population health.","authors":"Hyojung Kim, Ah-Hyun Park, Minjae Kwon, Kyoung Joo Lee, Min-Jeong Kim, Min-Seob Lee","doi":"10.1016/j.exger.2025.112918","DOIUrl":null,"url":null,"abstract":"<p><p>Measuring biological aging-the underlying rate of physiological decline-has become increasingly important in predicting disease risk, guiding personalized health strategies, and advancing age-targeted therapeutics. Unlike chronological age, biological age provides a more accurate reflection of an individual's functional health and longevity potential. DNA methylation-based epigenetic clocks are established tools for estimating biological age, but existing assays often require hundreds to thousands of CpG sites, resulting in high costs, complex analysis, and poor scalability. These limitations hinder their practical use in large-scale population screening and routine clinical applications. To address this gap, we developed EpiClock, a streamlined and cost-effective biological age prediction model based on just eight age-associated CpG markers (ASPA, FHL2, MIR29B2CHG, Chr16q24.1, SLC12A5, SST, LDB2, and COL1A1) from blood-derived DNA. The model showed high accuracy (R<sup>2</sup> = 0.9332; mean absolute deviation (MAD) = 3.78 years), strong inter-operator reproducibility (R<sup>2</sup> = 0.9667), and robust intra-assay precision (CV < 6 %, SD ≤ 0.05), with optimal performance using buffy coat samples. By combining a minimal marker set with high analytical reliability, EpiClock enables scalable, high-throughput biological age assessment-supporting its use in drug development, population-level screening, and accessible precision aging diagnostics.</p>","PeriodicalId":94003,"journal":{"name":"Experimental gerontology","volume":" ","pages":"112918"},"PeriodicalIF":4.3000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental gerontology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.exger.2025.112918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Measuring biological aging-the underlying rate of physiological decline-has become increasingly important in predicting disease risk, guiding personalized health strategies, and advancing age-targeted therapeutics. Unlike chronological age, biological age provides a more accurate reflection of an individual's functional health and longevity potential. DNA methylation-based epigenetic clocks are established tools for estimating biological age, but existing assays often require hundreds to thousands of CpG sites, resulting in high costs, complex analysis, and poor scalability. These limitations hinder their practical use in large-scale population screening and routine clinical applications. To address this gap, we developed EpiClock, a streamlined and cost-effective biological age prediction model based on just eight age-associated CpG markers (ASPA, FHL2, MIR29B2CHG, Chr16q24.1, SLC12A5, SST, LDB2, and COL1A1) from blood-derived DNA. The model showed high accuracy (R2 = 0.9332; mean absolute deviation (MAD) = 3.78 years), strong inter-operator reproducibility (R2 = 0.9667), and robust intra-assay precision (CV < 6 %, SD ≤ 0.05), with optimal performance using buffy coat samples. By combining a minimal marker set with high analytical reliability, EpiClock enables scalable, high-throughput biological age assessment-supporting its use in drug development, population-level screening, and accessible precision aging diagnostics.

EpiClock;使用最小CpG标记集进行血液DNA甲基化生物年龄测量,用于高通量iPlex质谱分析,用于药物开发和人群健康筛查。
测量生物衰老——生理衰退的潜在速率——在预测疾病风险、指导个性化健康策略和推进针对年龄的治疗方面变得越来越重要。与实足年龄不同,生物年龄能更准确地反映一个人的功能性健康和长寿潜力。基于DNA甲基化的表观遗传时钟是估计生物年龄的既定工具,但现有的分析通常需要数百到数千个CpG位点,导致成本高,分析复杂,可扩展性差。这些限制阻碍了它们在大规模人群筛查和常规临床应用中的实际应用。为了解决这一差距,我们开发了EpiClock,这是一种简化且具有成本效益的生物年龄预测模型,仅基于来自血液DNA的8种年龄相关CpG标记(ASPA, FHL2, MIR29B2CHG, Chr16q24.1, SLC12A5, SST, LDB2和COL1A1)。该模型具有较高的准确度(R2 = 0.9332;平均绝对偏差(MAD) = 3.78 年)、较强的操作间重现性(R2 = 0.9667)和稳健的检测内精密度(CV
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental gerontology
Experimental gerontology Ageing, Biochemistry, Geriatrics and Gerontology
CiteScore
6.70
自引率
0.00%
发文量
0
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信