The dissipation theory of aging: a quantitative analysis using a cellular aging map.

IF 6 Q2 GERIATRICS & GERONTOLOGY
Farhan Khodaee, Rohola Zandie, Louis-Alexandre Leger, Yufan Xia, Pakaphol Thadawasin, Elazer R Edelman
{"title":"The dissipation theory of aging: a quantitative analysis using a cellular aging map.","authors":"Farhan Khodaee, Rohola Zandie, Louis-Alexandre Leger, Yufan Xia, Pakaphol Thadawasin, Elazer R Edelman","doi":"10.1038/s41514-025-00277-2","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a new theory for aging based on dynamical systems and provide a data-driven computational method to quantify the changes at the cellular level. We use ergodic theory to decompose the dynamics of changes during aging and show that aging is fundamentally a dissipative process within biological systems, akin to dynamical systems where dissipation occurs due to non-conservative forces. To quantify the dissipation dynamics, we employ a transformer-based machine learning algorithm to analyze gene expression data, incorporating age as a token to assess how age-related dissipation is reflected in the embedding space. By evaluating the dynamics of gene and age embeddings, we provide a cellular aging map (CAM) and identify patterns indicative of divergence in gene embedding space, nonlinear transitions, and entropy variations during aging for various tissues and cell types. Our results provide a novel perspective on aging as a dissipative process and introduce a computational framework that enables measuring age-related changes with molecular resolution.</p>","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"11 1","pages":"86"},"PeriodicalIF":6.0000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-025-00277-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a new theory for aging based on dynamical systems and provide a data-driven computational method to quantify the changes at the cellular level. We use ergodic theory to decompose the dynamics of changes during aging and show that aging is fundamentally a dissipative process within biological systems, akin to dynamical systems where dissipation occurs due to non-conservative forces. To quantify the dissipation dynamics, we employ a transformer-based machine learning algorithm to analyze gene expression data, incorporating age as a token to assess how age-related dissipation is reflected in the embedding space. By evaluating the dynamics of gene and age embeddings, we provide a cellular aging map (CAM) and identify patterns indicative of divergence in gene embedding space, nonlinear transitions, and entropy variations during aging for various tissues and cell types. Our results provide a novel perspective on aging as a dissipative process and introduce a computational framework that enables measuring age-related changes with molecular resolution.

老化的耗散理论:使用细胞老化图的定量分析。
我们提出了一种新的基于动力系统的衰老理论,并提供了一种数据驱动的计算方法来量化细胞水平上的变化。我们使用遍历理论来分解老化过程中变化的动力学,并表明老化基本上是生物系统内的耗散过程,类似于由于非保守力而耗散的动力系统。为了量化耗散动态,我们采用基于变压器的机器学习算法来分析基因表达数据,并将年龄作为标记来评估与年龄相关的耗散如何反映在嵌入空间中。通过评估基因和年龄嵌入的动态,我们提供了一个细胞衰老图(CAM),并确定了不同组织和细胞类型在衰老过程中基因嵌入空间、非线性转换和熵变化的差异模式。我们的研究结果为衰老作为耗散过程提供了一个新的视角,并引入了一个计算框架,可以用分子分辨率测量年龄相关的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信