Spine age estimation using deep learning in lateral spine radiographs and DXA VFA to predict incident fracture and mortality.

IF 6 Q2 GERIATRICS & GERONTOLOGY
Sang Wouk Cho, Namki Hong, Kyoung Min Kim, Young Han Lee, Chang Oh Kim, Hyeon Chang Kim, Yumie Rhee, Brian H Chen, William D Leslie, Steven R Cummings
{"title":"Spine age estimation using deep learning in lateral spine radiographs and DXA VFA to predict incident fracture and mortality.","authors":"Sang Wouk Cho, Namki Hong, Kyoung Min Kim, Young Han Lee, Chang Oh Kim, Hyeon Chang Kim, Yumie Rhee, Brian H Chen, William D Leslie, Steven R Cummings","doi":"10.1038/s41514-025-00271-8","DOIUrl":null,"url":null,"abstract":"<p><p>Spine age estimated from lateral spine radiographs and DXA VFAs could be associated with fracture and mortality risk. In the VERTE-X cohort (n = 10,341, derivation set) and KURE cohort (n = 3517; external test set), spine age discriminated prevalent vertebral fractures and osteoporosis better than chronological age. Predicted age difference was associated with overall (adjusted HR [aHR] 1.22 per 1 SD increment, p < 0.001), vertebral, non-vertebral incident fractures, and mortality (aHR 1.31, p = 0.001) during a median 6.6 years follow-up in KURE, independent of chronological age and covariates. Spine age to estimate FRAX hip fracture probabilities, instead of chronological age, improved the discriminatory performance for incident hip fracture (AUROC 0.83 vs. 0.78, p = 0.027). Shorter height, lower femoral neck BMD, diabetes, vertebral fractures, and surgical prosthesis were associated with higher predicted age difference, explaining 40% of variance. Spine age estimated from lateral spine radiographs and DXA VFA enhanced fracture risk assessment and mortality prediction over chronological age.</p>","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"11 1","pages":"83"},"PeriodicalIF":6.0000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-025-00271-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spine age estimated from lateral spine radiographs and DXA VFAs could be associated with fracture and mortality risk. In the VERTE-X cohort (n = 10,341, derivation set) and KURE cohort (n = 3517; external test set), spine age discriminated prevalent vertebral fractures and osteoporosis better than chronological age. Predicted age difference was associated with overall (adjusted HR [aHR] 1.22 per 1 SD increment, p < 0.001), vertebral, non-vertebral incident fractures, and mortality (aHR 1.31, p = 0.001) during a median 6.6 years follow-up in KURE, independent of chronological age and covariates. Spine age to estimate FRAX hip fracture probabilities, instead of chronological age, improved the discriminatory performance for incident hip fracture (AUROC 0.83 vs. 0.78, p = 0.027). Shorter height, lower femoral neck BMD, diabetes, vertebral fractures, and surgical prosthesis were associated with higher predicted age difference, explaining 40% of variance. Spine age estimated from lateral spine radiographs and DXA VFA enhanced fracture risk assessment and mortality prediction over chronological age.

使用深度学习侧位脊柱x线片和DXA VFA来估计脊柱年龄,以预测意外骨折和死亡率。
脊柱侧位x线片和DXA VFAs估计的脊柱年龄可能与骨折和死亡风险相关。在VERTE-X队列(n = 10,341,衍生集)和KURE队列(n = 3517,外部测试集)中,脊柱年龄比实足年龄更能区分椎体骨折和骨质疏松症的发生率。预测年龄差异与总体(调整HR [aHR] 1.22 / 1 SD增量,p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信