Fungal determinants contributing to translocation of Candida albicans yeast cells through the intestinal epithelial barrier.

microLife Pub Date : 2025-09-25 eCollection Date: 2025-01-01 DOI:10.1093/femsml/uqaf026
Jakob L Sprague, Tim B Schille, Theresa Lange, Johannes Sonnberger, Stefanie Allert, Josefin Schönert, Lydia Kasper, Bernhard Hube
{"title":"Fungal determinants contributing to translocation of <i>Candida albicans</i> yeast cells through the intestinal epithelial barrier.","authors":"Jakob L Sprague, Tim B Schille, Theresa Lange, Johannes Sonnberger, Stefanie Allert, Josefin Schönert, Lydia Kasper, Bernhard Hube","doi":"10.1093/femsml/uqaf026","DOIUrl":null,"url":null,"abstract":"<p><p>Filamentous hyphae are the main invasive morphotype of the opportunistic fungal pathogen <i>Candida albicans</i>. However, yeast cells seem better suited for dissemination through the bloodstream during the progression of life-threatening systemic infections. While yeast cells are present together with hyphae in the intestine during commensal colonization, how yeast cells ultimately reach the blood following translocation of invasive hyphae is unknown. In this study we investigated potential mechanisms proposed for how yeast cells may enter the blood using an <i>in vitro</i> model of translocation based on intestinal epithelial cells (IECs). Our data show that yeast cells can passively translocate with invasive hyphae, though this requires host-cell damage facilitated by the peptide toxin candidalysin, encoded by <i>ECE1</i>. Independent of fungal-mediated damage, chemical disruption of the IEC layer by the mycotoxin patulin was sufficient to foster efficient translocation of <i>C. albicans</i> yeast cells alone. This was dependent on a significant loss of barrier integrity rather than host-cell damage itself. The same phenomenon was observed for oral clinical isolates, which more readily grow as yeast and pseudohyphal cells as compared to the standard SC5314 strain. The transition of hypha-to-yeast growth was also associated with translocation across IECs by increased expression of the yeast-essential gene <i>PES1</i>. This is the first study to directly investigate the mechanisms by which <i>C. albicans</i> yeast cells can translocate across IECs and to describe the fungal factors that contribute to this process.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"6 ","pages":"uqaf026"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12505492/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"microLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/femsml/uqaf026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Filamentous hyphae are the main invasive morphotype of the opportunistic fungal pathogen Candida albicans. However, yeast cells seem better suited for dissemination through the bloodstream during the progression of life-threatening systemic infections. While yeast cells are present together with hyphae in the intestine during commensal colonization, how yeast cells ultimately reach the blood following translocation of invasive hyphae is unknown. In this study we investigated potential mechanisms proposed for how yeast cells may enter the blood using an in vitro model of translocation based on intestinal epithelial cells (IECs). Our data show that yeast cells can passively translocate with invasive hyphae, though this requires host-cell damage facilitated by the peptide toxin candidalysin, encoded by ECE1. Independent of fungal-mediated damage, chemical disruption of the IEC layer by the mycotoxin patulin was sufficient to foster efficient translocation of C. albicans yeast cells alone. This was dependent on a significant loss of barrier integrity rather than host-cell damage itself. The same phenomenon was observed for oral clinical isolates, which more readily grow as yeast and pseudohyphal cells as compared to the standard SC5314 strain. The transition of hypha-to-yeast growth was also associated with translocation across IECs by increased expression of the yeast-essential gene PES1. This is the first study to directly investigate the mechanisms by which C. albicans yeast cells can translocate across IECs and to describe the fungal factors that contribute to this process.

真菌决定因素有助于白色念珠菌酵母细胞通过肠上皮屏障易位。
丝状菌丝是机会性真菌白色念珠菌的主要侵袭形态。然而,酵母细胞似乎更适合在危及生命的全身性感染的进展过程中通过血液传播。虽然在共生定植过程中,酵母细胞与菌丝一起存在于肠道中,但酵母细胞如何在侵入性菌丝易位后最终到达血液中尚不清楚。在这项研究中,我们利用基于肠上皮细胞(IECs)的体外易位模型研究了酵母细胞如何进入血液的潜在机制。我们的数据表明,酵母细胞可以被动地与侵袭性菌丝转移,尽管这需要由ECE1编码的肽毒素candidalysin促进宿主细胞损伤。独立于真菌介导的损伤,霉菌毒素展霉素对IEC层的化学破坏足以单独促进白色念珠菌酵母细胞的有效易位。这取决于屏障完整性的显著丧失,而不是宿主细胞本身的损伤。口腔临床分离株也观察到同样的现象,与标准SC5314菌株相比,它更容易生长为酵母和假菌丝细胞。通过酵母必需基因PES1的表达增加,菌丝向酵母生长的转变也与iec间的易位有关。这是第一个直接研究白色念珠菌酵母细胞在IECs间转移的机制,并描述了促进这一过程的真菌因素的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信