Improving cervical maturation degree classification accuracy using a multi-stage deep learning approach.

IF 2.1 Q3 DENTISTRY, ORAL SURGERY & MEDICINE
Imaging Science in Dentistry Pub Date : 2025-09-01 Epub Date: 2025-07-01 DOI:10.5624/isd.20250045
Parisa Motie, Ali Ashkan, Hossein Mohammad-Rahimi, Sahel Hassanzadeh-Samani, Negar Razzaghi, Mohammad Behnaz, Shahriar Shahab, Saeed Reza Motamadian
{"title":"Improving cervical maturation degree classification accuracy using a multi-stage deep learning approach.","authors":"Parisa Motie, Ali Ashkan, Hossein Mohammad-Rahimi, Sahel Hassanzadeh-Samani, Negar Razzaghi, Mohammad Behnaz, Shahriar Shahab, Saeed Reza Motamadian","doi":"10.5624/isd.20250045","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Classifying cervical vertebral maturation (CVM) stages aids in determining the peak period of growth and in predicting growth rates and patterns. This study aimed to develop a multistage framework for the automated classification of CVM.</p><p><strong>Materials and methods: </strong>The dataset consisted of 2325 lateral cephalograms. Two orthodontists independently classified these images into 6 categories. One object detection model (Faster RCNN) and 2 classification models (ResNet 101) were implemented using the Python programming language and the PyTorch library. The first classification model divided images into 2 primary groups (CS1-CS3 and CS4-CS6) based on the morphology of the C4 vertebra. The second model subsequently classified each primary group into their respective subcategories. Each classification model was trained and evaluated using a 10-fold cross-validation strategy. The learning process of the models was visualized with gradient-weighted class activation maps.</p><p><strong>Results: </strong>The overall framework achieved an accuracy of 82.96%. Object detection for region-of-interest extraction reached mAP50 and mAP75 values of 100%. The first classification model demonstrated an accuracy of 99.10% on the hold-out test set. The classifier for CS1-CS3 images showed higher accuracy than the classifier for CS4-CS6 images (86.49% vs. 82.80%).</p><p><strong>Conclusion: </strong>The accuracy achieved by this fully automated framework was promising.</p>","PeriodicalId":51714,"journal":{"name":"Imaging Science in Dentistry","volume":"55 3","pages":"290-301"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12505443/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging Science in Dentistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5624/isd.20250045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Classifying cervical vertebral maturation (CVM) stages aids in determining the peak period of growth and in predicting growth rates and patterns. This study aimed to develop a multistage framework for the automated classification of CVM.

Materials and methods: The dataset consisted of 2325 lateral cephalograms. Two orthodontists independently classified these images into 6 categories. One object detection model (Faster RCNN) and 2 classification models (ResNet 101) were implemented using the Python programming language and the PyTorch library. The first classification model divided images into 2 primary groups (CS1-CS3 and CS4-CS6) based on the morphology of the C4 vertebra. The second model subsequently classified each primary group into their respective subcategories. Each classification model was trained and evaluated using a 10-fold cross-validation strategy. The learning process of the models was visualized with gradient-weighted class activation maps.

Results: The overall framework achieved an accuracy of 82.96%. Object detection for region-of-interest extraction reached mAP50 and mAP75 values of 100%. The first classification model demonstrated an accuracy of 99.10% on the hold-out test set. The classifier for CS1-CS3 images showed higher accuracy than the classifier for CS4-CS6 images (86.49% vs. 82.80%).

Conclusion: The accuracy achieved by this fully automated framework was promising.

Abstract Image

Abstract Image

Abstract Image

利用多阶段深度学习方法提高宫颈成熟程度分类精度。
目的:对颈椎成熟(CVM)分期进行分类,有助于确定生长高峰期,预测生长速度和模式。本研究旨在建立一个多阶段的CVM自动分类框架。材料和方法:数据集包括2325张侧位脑电图。两名正畸医生独立地将这些图像分为6类。使用Python编程语言和PyTorch库实现了一个对象检测模型(Faster RCNN)和两个分类模型(ResNet 101)。第一种分类模型根据C4椎体形态将图像分为2组(CS1-CS3和CS4-CS6)。第二个模型随后将每个主要群体划分为各自的子类别。每个分类模型都使用10倍交叉验证策略进行训练和评估。用梯度加权类激活图将模型的学习过程可视化。结果:整体框架准确率为82.96%。目标检测对感兴趣区域提取的mAP50和mAP75值达到100%。第一个分类模型在hold-out测试集上的准确率为99.10%。CS1-CS3图像分类器的准确率高于CS4-CS6图像分类器(86.49% vs. 82.80%)。结论:该全自动框架的准确性是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Imaging Science in Dentistry
Imaging Science in Dentistry DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
2.90
自引率
11.10%
发文量
42
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信