{"title":"Multi-view spectral clustering algorithm based on bipartite graph and multi-feature similarity fusion.","authors":"Shunyong Li, Kun Liu, Mengjiao Zheng, Liang Bai","doi":"10.1016/j.neunet.2025.108177","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-view clustering remains a challenging task due to the heterogeneity and inconsistency across multiple views. Most esisting multi-view spectral clustering methods adopt a two-stage approch-constructing fused spectral embeddings matrix followed by k-means clustering-which often leads to information loss and suboptimal performance. Moreover, current graph and feature fusion strategies struggle to address view-specific discrepancies and label misalignment, while their high computational complexity hinders scalability to large datasets. To overcome these limitations, we propose a unified Multi-view Spectral Clustering algorithm based on Bipartite Graph and Multi-feature Similarity Fusion (BG-MFS). The proposed framework jointly integrates bipartite graph construction, multi-feature similarity fusion, and discrete clustering within a single optimization model, enabling mutual reinforcement among components. Furthermore, an entropy-based weighting mechanism is introduced to adaptively assess the contribution of each view. Extensive experiments demonstrate that BG-MFS consistently outperforms state-of-the-art methods in both clustering accuracy and computational efficiency.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"194 ","pages":"108177"},"PeriodicalIF":6.3000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2025.108177","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-view clustering remains a challenging task due to the heterogeneity and inconsistency across multiple views. Most esisting multi-view spectral clustering methods adopt a two-stage approch-constructing fused spectral embeddings matrix followed by k-means clustering-which often leads to information loss and suboptimal performance. Moreover, current graph and feature fusion strategies struggle to address view-specific discrepancies and label misalignment, while their high computational complexity hinders scalability to large datasets. To overcome these limitations, we propose a unified Multi-view Spectral Clustering algorithm based on Bipartite Graph and Multi-feature Similarity Fusion (BG-MFS). The proposed framework jointly integrates bipartite graph construction, multi-feature similarity fusion, and discrete clustering within a single optimization model, enabling mutual reinforcement among components. Furthermore, an entropy-based weighting mechanism is introduced to adaptively assess the contribution of each view. Extensive experiments demonstrate that BG-MFS consistently outperforms state-of-the-art methods in both clustering accuracy and computational efficiency.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.