Downscaled global 60-meter resolution estimates of irrigation water sources (2000-2015).

IF 6.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Fengwei Hung, Davide Danilo Chiarelli, James S Famiglietti, Marc F Müller
{"title":"Downscaled global 60-meter resolution estimates of irrigation water sources (2000-2015).","authors":"Fengwei Hung, Davide Danilo Chiarelli, James S Famiglietti, Marc F Müller","doi":"10.1038/s41597-025-05920-x","DOIUrl":null,"url":null,"abstract":"<p><p>This dataset provides high-resolution (60 m) global irrigation maps to support water resource and agricultural management. It identifies the likely irrigation status (rainfed or irrigated) and water source (groundwater or surface water) of croplands for 2000, 2005, 2010, and 2015. We downscaled a 10-km irrigation dataset derived from national and subnational statistics (GMIA) using (i) spatial patterns between high-resolution (30 m) cropland and nearby surface water, and (ii) irrigation water requirements from a global crop model. Validation used household agriculture surveys in India (N = 8,355) and a U.S. well database (N = 1,505,371). In the U.S., our method achieved 85% accuracy in distinguishing groundwater use within 2 km of wells - substantially higher than GMIA (25%). In India's groundwater-dominated regions, our estimates performed comparably to GMIA (73% vs. 72%). These results suggest our dataset offers a more accurate and spatially detailed representation of irrigation water sources, enabling improved analysis of agricultural water use.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"1632"},"PeriodicalIF":6.9000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-05920-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This dataset provides high-resolution (60 m) global irrigation maps to support water resource and agricultural management. It identifies the likely irrigation status (rainfed or irrigated) and water source (groundwater or surface water) of croplands for 2000, 2005, 2010, and 2015. We downscaled a 10-km irrigation dataset derived from national and subnational statistics (GMIA) using (i) spatial patterns between high-resolution (30 m) cropland and nearby surface water, and (ii) irrigation water requirements from a global crop model. Validation used household agriculture surveys in India (N = 8,355) and a U.S. well database (N = 1,505,371). In the U.S., our method achieved 85% accuracy in distinguishing groundwater use within 2 km of wells - substantially higher than GMIA (25%). In India's groundwater-dominated regions, our estimates performed comparably to GMIA (73% vs. 72%). These results suggest our dataset offers a more accurate and spatially detailed representation of irrigation water sources, enabling improved analysis of agricultural water use.

缩小全球60米分辨率的灌溉水源估算(2000-2015)
该数据集提供高分辨率(60米)的全球灌溉地图,以支持水资源和农业管理。它确定了2000年、2005年、2010年和2015年农田可能的灌溉状况(雨养或灌溉)和水源(地下水或地表水)。我们使用(i)高分辨率(30米)农田与附近地表水之间的空间格局,以及(ii)来自全球作物模型的灌溉用水需求,缩小了来自国家和地方统计数据(GMIA)的10公里灌溉数据集。验证使用了印度家庭农业调查(N = 8,355)和美国水井数据库(N = 1,505,371)。在美国,我们的方法在水井2公里范围内识别地下水使用情况的准确率达到85%,大大高于GMIA(25%)。在印度地下水占主导地位的地区,我们的估计结果与GMIA相当(73%对72%)。这些结果表明,我们的数据集提供了更准确和空间详细的灌溉水源表示,从而改进了农业用水分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信