Hong Zhang, Yuxing Cai, Yuqi Fang, Yong Huang, Jiean Chen
{"title":"Stereoselective diversification of α-amino acids enabled by N-heterocyclic carbene catalysis.","authors":"Hong Zhang, Yuxing Cai, Yuqi Fang, Yong Huang, Jiean Chen","doi":"10.1038/s41467-025-64024-7","DOIUrl":null,"url":null,"abstract":"<p><p>Chiral α-amino acids (AAs), essential to biological systems and drug design, drive demand for precise synthetic methods to access unnatural variants (UAAs) and stereochemically defined peptides. We report an N-heterocyclic carbene (NHC)-catalyzed strategy enabling enantioselective synthesis of α-(U)AA esters and peptides. Leveraging NHC-generated acyl azolium intermediates, this approach achieves dynamic kinetic resolution of racemic or chiral α-(U)AAs with broad substrate scope, including sterically hindered and unsaturated derivatives. Stereodivergent synthesis is accomplished via NHC-mediated proton shuttling, which usually furnishes enantio-complementary α-(U)AAs and peptides with >90% ee (de). Mechanistic studies establish that N,N'-diisopropylcarbodiimide activates α-(U)AAs to form oxazolone intermediates, which undergo NHC-mediated conversion to acyl azolium species. Divergent nucleophilic pathways are governed by chiral matching between catalyst and substrate, as evidenced by density functional theory (DFT) calculations revealing π-π interactions and steric effects as stereoselectivity determinants. The methodology's utility is also demonstrated in solid-phase peptide synthesis, achieving direct chirality transfer from racemic precursors to peptides with minimal epimerization. This work provides a catalytic platform for stereocontrolled α-(U)AA and peptide synthesis, with implications for chemical biology and peptide therapeutic development.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"8991"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12511568/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64024-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Chiral α-amino acids (AAs), essential to biological systems and drug design, drive demand for precise synthetic methods to access unnatural variants (UAAs) and stereochemically defined peptides. We report an N-heterocyclic carbene (NHC)-catalyzed strategy enabling enantioselective synthesis of α-(U)AA esters and peptides. Leveraging NHC-generated acyl azolium intermediates, this approach achieves dynamic kinetic resolution of racemic or chiral α-(U)AAs with broad substrate scope, including sterically hindered and unsaturated derivatives. Stereodivergent synthesis is accomplished via NHC-mediated proton shuttling, which usually furnishes enantio-complementary α-(U)AAs and peptides with >90% ee (de). Mechanistic studies establish that N,N'-diisopropylcarbodiimide activates α-(U)AAs to form oxazolone intermediates, which undergo NHC-mediated conversion to acyl azolium species. Divergent nucleophilic pathways are governed by chiral matching between catalyst and substrate, as evidenced by density functional theory (DFT) calculations revealing π-π interactions and steric effects as stereoselectivity determinants. The methodology's utility is also demonstrated in solid-phase peptide synthesis, achieving direct chirality transfer from racemic precursors to peptides with minimal epimerization. This work provides a catalytic platform for stereocontrolled α-(U)AA and peptide synthesis, with implications for chemical biology and peptide therapeutic development.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.