Determining off-target effects of splice-switching antisense oligonucleotides using short read RNAseq in neuronally differentiated human induced pluripotent stem cells.
Elsa C Kuijper, Linda van der Graaf, Barry A Pepers, Mariana Guimarães Ramos, Sylvia Korhorn, Lodewijk J A Toonen, Davy Cats, Ronald A M Buijsen, Eleni Mina, Hailiang Mei, Willeke M C van Roon-Mom
{"title":"Determining off-target effects of splice-switching antisense oligonucleotides using short read RNAseq in neuronally differentiated human induced pluripotent stem cells.","authors":"Elsa C Kuijper, Linda van der Graaf, Barry A Pepers, Mariana Guimarães Ramos, Sylvia Korhorn, Lodewijk J A Toonen, Davy Cats, Ronald A M Buijsen, Eleni Mina, Hailiang Mei, Willeke M C van Roon-Mom","doi":"10.1093/hmg/ddaf153","DOIUrl":null,"url":null,"abstract":"<p><p>Antisense oligonucleotides (AONs) are small pieces of chemically modified DNA or RNA that bind to RNA in a sequence-specific manner based on Watson-Crick base-pairing. Splice-switching AONs are designed to modulate pre-mRNA splicing, thereby for instance restoring protein expression or modifying the eventual protein to restore its function or reduce its toxicity. Given the current lack of in silico methods that adequately predict off-target splicing events, assessment of off-target effects of AONs in human cells using RNAseq could be a promising approach. The identification and prioritization of potential off-target effects for validation and further investigation into the biological relevance would contribute to the development of safe and effective AONs. In this study, we used three different splice-switching AONs targeting three different human transcripts to study their transcriptome-wide, hybridization-dependent off-target effects with short read RNAseq. Using the computational tools rMATS and Whippet, we identified differential splicing events of which only a minority could be explained by hybridization, illustrating the difficulty of predicting off-target effects based on sequence homology. The main splicing events could all be validated with RT-PCR. Furthermore, from the three AONs studied, one AON induced considerably more changes in gene expression and splicing compared to the two other AONs assessed, which was confirmed in a validation experiment. Our study demonstrates that interpretation of short read RNAseq data to determine off-target effects is challenging. Nonetheless, valuable results can be obtained as it allows the comparison of toxicity between different AONs within an experiment and identification of AON-specific off-target profiles.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddaf153","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antisense oligonucleotides (AONs) are small pieces of chemically modified DNA or RNA that bind to RNA in a sequence-specific manner based on Watson-Crick base-pairing. Splice-switching AONs are designed to modulate pre-mRNA splicing, thereby for instance restoring protein expression or modifying the eventual protein to restore its function or reduce its toxicity. Given the current lack of in silico methods that adequately predict off-target splicing events, assessment of off-target effects of AONs in human cells using RNAseq could be a promising approach. The identification and prioritization of potential off-target effects for validation and further investigation into the biological relevance would contribute to the development of safe and effective AONs. In this study, we used three different splice-switching AONs targeting three different human transcripts to study their transcriptome-wide, hybridization-dependent off-target effects with short read RNAseq. Using the computational tools rMATS and Whippet, we identified differential splicing events of which only a minority could be explained by hybridization, illustrating the difficulty of predicting off-target effects based on sequence homology. The main splicing events could all be validated with RT-PCR. Furthermore, from the three AONs studied, one AON induced considerably more changes in gene expression and splicing compared to the two other AONs assessed, which was confirmed in a validation experiment. Our study demonstrates that interpretation of short read RNAseq data to determine off-target effects is challenging. Nonetheless, valuable results can be obtained as it allows the comparison of toxicity between different AONs within an experiment and identification of AON-specific off-target profiles.
期刊介绍:
Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include:
the molecular basis of human genetic disease
developmental genetics
cancer genetics
neurogenetics
chromosome and genome structure and function
therapy of genetic disease
stem cells in human genetic disease and therapy, including the application of iPS cells
genome-wide association studies
mouse and other models of human diseases
functional genomics
computational genomics
In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.