Soil and plant communities co-regulating plant biomass allocation patterns along a saline-alkali gradient, case study of Allium ramosum in Songnen Grassland, Northeast China.
{"title":"Soil and plant communities co-regulating plant biomass allocation patterns along a saline-alkali gradient, case study of <i>Allium ramosum</i> in Songnen Grassland, Northeast China.","authors":"Changxing Fu, Jiayan Fan, Gaohua Fan, Heqi Wang, Congwen Wang, Wei Qiang, Dafu Yu, Yingxin Huang","doi":"10.3389/fpls.2025.1627304","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Plants have developed sophisticated mechanisms to adapt to changing environments. The strategies for biomass allocation is critical for plant to ensure fitness. Increasing soil salinity has a dramatic impact on plant growth and reproduction from the individual to community level. However, our understanding of how plants adapt their biomass allocation strategies to changes in soil salinity and community structure is incomplete.</p><p><strong>Methods: </strong>We investigated 122 individuals of perennial herb <i>Allium ramosum</i> from 70 plots along a soil gradient in Songnen grassland. Field investigations determined the physicochemical properties of the soil, aboveground biomass, richness and individual and each organ (root, stem, leaf, flower, and bulb) biomass of A. ramosum.</p><p><strong>Results: </strong>The results showed that plant community aboveground biomass and community-weighted height decreased as soil salinity increased. <i>A. ramosum</i> individual size decreased, the allometric exponents between reproductive organs (flowers) and storage organs (bulbs) also decreased, with more biomass allocated to flowers. However, this trend was indirectly influenced by salinization through a reduction in community weighted height (reducing light competition) and community aboveground biomass (altering competitive pressure for resources), rather than a direct response to soil salinity.</p><p><strong>Conclusions: </strong>This study highlights the complex interplay between community structure and individual plant adaptation strategies in response to environmental gradients, emphasizing the role of community-scale processes in regulating individual resource allocation.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1627304"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12504303/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1627304","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: Plants have developed sophisticated mechanisms to adapt to changing environments. The strategies for biomass allocation is critical for plant to ensure fitness. Increasing soil salinity has a dramatic impact on plant growth and reproduction from the individual to community level. However, our understanding of how plants adapt their biomass allocation strategies to changes in soil salinity and community structure is incomplete.
Methods: We investigated 122 individuals of perennial herb Allium ramosum from 70 plots along a soil gradient in Songnen grassland. Field investigations determined the physicochemical properties of the soil, aboveground biomass, richness and individual and each organ (root, stem, leaf, flower, and bulb) biomass of A. ramosum.
Results: The results showed that plant community aboveground biomass and community-weighted height decreased as soil salinity increased. A. ramosum individual size decreased, the allometric exponents between reproductive organs (flowers) and storage organs (bulbs) also decreased, with more biomass allocated to flowers. However, this trend was indirectly influenced by salinization through a reduction in community weighted height (reducing light competition) and community aboveground biomass (altering competitive pressure for resources), rather than a direct response to soil salinity.
Conclusions: This study highlights the complex interplay between community structure and individual plant adaptation strategies in response to environmental gradients, emphasizing the role of community-scale processes in regulating individual resource allocation.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.