Primary cilia in the mature brain: emerging roles in Alzheimer's disease pathogenesis.

IF 4.6 2区 生物学 Q2 CELL BIOLOGY
Frontiers in Cell and Developmental Biology Pub Date : 2025-09-24 eCollection Date: 2025-01-01 DOI:10.3389/fcell.2025.1650884
Alexis Shiying Huang, Amy Sze Man Li, Catherine Hong Huan Hor
{"title":"Primary cilia in the mature brain: emerging roles in Alzheimer's disease pathogenesis.","authors":"Alexis Shiying Huang, Amy Sze Man Li, Catherine Hong Huan Hor","doi":"10.3389/fcell.2025.1650884","DOIUrl":null,"url":null,"abstract":"<p><p>Primary cilia are microtubule-based structures that resemble antennae and function as sensory organelles. Dysfunction of primary cilia has been linked to various age-related conditions. Alzheimer's disease, which affects more than 38.5 million individuals worldwide, is a prominent neurodegenerative disorder, with aging being its most significant risk factor. In this review, we provide an overview of current findings on the role of primary cilia in the mature brain and the mechanisms by which alteration of primary cilia may influence the progression of Alzheimer's disease. Growing evidence reveals that primary cilia in the mature brain play dynamic roles in cell type, region, and age-dependent manners. In Alzheimer's disease, anomalies in primary cilia functions and morphology are closely associated with key pathologies. However, the exact mechanisms remain unclear. Future studies on neuronal and glial cilia dynamics during aging and neurodegeneration are essential to explore their potential as therapeutic targets.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"13 ","pages":"1650884"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12504367/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2025.1650884","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Primary cilia are microtubule-based structures that resemble antennae and function as sensory organelles. Dysfunction of primary cilia has been linked to various age-related conditions. Alzheimer's disease, which affects more than 38.5 million individuals worldwide, is a prominent neurodegenerative disorder, with aging being its most significant risk factor. In this review, we provide an overview of current findings on the role of primary cilia in the mature brain and the mechanisms by which alteration of primary cilia may influence the progression of Alzheimer's disease. Growing evidence reveals that primary cilia in the mature brain play dynamic roles in cell type, region, and age-dependent manners. In Alzheimer's disease, anomalies in primary cilia functions and morphology are closely associated with key pathologies. However, the exact mechanisms remain unclear. Future studies on neuronal and glial cilia dynamics during aging and neurodegeneration are essential to explore their potential as therapeutic targets.

Abstract Image

Abstract Image

成熟大脑中的初级纤毛:阿尔茨海默病发病机制中的新角色。
初级纤毛是微管结构,类似于触角,具有感觉细胞器的功能。初级纤毛功能障碍与各种与年龄有关的疾病有关。阿尔茨海默病是一种突出的神经退行性疾病,影响着全球3850多万人,衰老是其最重要的风险因素。在这篇综述中,我们概述了初级纤毛在成熟大脑中的作用以及初级纤毛改变可能影响阿尔茨海默病进展的机制。越来越多的证据表明,成熟大脑中的初级纤毛在细胞类型、区域和年龄依赖性方面起着动态作用。在阿尔茨海默病中,初级纤毛功能和形态的异常与关键病理密切相关。然而,确切的机制尚不清楚。未来对衰老和神经退行性变过程中神经元和胶质纤毛动力学的研究对于探索其作为治疗靶点的潜力至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Cell and Developmental Biology
Frontiers in Cell and Developmental Biology Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
9.70
自引率
3.60%
发文量
2531
审稿时长
12 weeks
期刊介绍: Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board. The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology. With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信