Alexis Shiying Huang, Amy Sze Man Li, Catherine Hong Huan Hor
{"title":"Primary cilia in the mature brain: emerging roles in Alzheimer's disease pathogenesis.","authors":"Alexis Shiying Huang, Amy Sze Man Li, Catherine Hong Huan Hor","doi":"10.3389/fcell.2025.1650884","DOIUrl":null,"url":null,"abstract":"<p><p>Primary cilia are microtubule-based structures that resemble antennae and function as sensory organelles. Dysfunction of primary cilia has been linked to various age-related conditions. Alzheimer's disease, which affects more than 38.5 million individuals worldwide, is a prominent neurodegenerative disorder, with aging being its most significant risk factor. In this review, we provide an overview of current findings on the role of primary cilia in the mature brain and the mechanisms by which alteration of primary cilia may influence the progression of Alzheimer's disease. Growing evidence reveals that primary cilia in the mature brain play dynamic roles in cell type, region, and age-dependent manners. In Alzheimer's disease, anomalies in primary cilia functions and morphology are closely associated with key pathologies. However, the exact mechanisms remain unclear. Future studies on neuronal and glial cilia dynamics during aging and neurodegeneration are essential to explore their potential as therapeutic targets.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"13 ","pages":"1650884"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12504367/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2025.1650884","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Primary cilia are microtubule-based structures that resemble antennae and function as sensory organelles. Dysfunction of primary cilia has been linked to various age-related conditions. Alzheimer's disease, which affects more than 38.5 million individuals worldwide, is a prominent neurodegenerative disorder, with aging being its most significant risk factor. In this review, we provide an overview of current findings on the role of primary cilia in the mature brain and the mechanisms by which alteration of primary cilia may influence the progression of Alzheimer's disease. Growing evidence reveals that primary cilia in the mature brain play dynamic roles in cell type, region, and age-dependent manners. In Alzheimer's disease, anomalies in primary cilia functions and morphology are closely associated with key pathologies. However, the exact mechanisms remain unclear. Future studies on neuronal and glial cilia dynamics during aging and neurodegeneration are essential to explore their potential as therapeutic targets.
期刊介绍:
Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board.
The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology.
With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.