cryoTIGER: deep-learning based tilt interpolation generator for enhanced reconstruction in cryo electron tomography.

IF 5.1 1区 生物学 Q1 BIOLOGY
Tomáš Majtner, Jan Philipp Kreysing, Maarten W Tuijtel, Sergio Cruz-León, Jiasui Liu, Gerhard Hummer, Martin Beck, Beata Turoňová
{"title":"cryoTIGER: deep-learning based tilt interpolation generator for enhanced reconstruction in cryo electron tomography.","authors":"Tomáš Majtner, Jan Philipp Kreysing, Maarten W Tuijtel, Sergio Cruz-León, Jiasui Liu, Gerhard Hummer, Martin Beck, Beata Turoňová","doi":"10.1038/s42003-025-08961-5","DOIUrl":null,"url":null,"abstract":"<p><p>Cryo-electron tomography enables the visualization of macromolecular complexes within native cellular environments but is limited by incomplete angular sampling and the maximal electron dose that biological specimens can be exposed to. Here, we developed cryoTIGER (Tilt Interpolation Generator for Enhanced Reconstruction), a computational workflow leveraging deep learning-based frame interpolation to generate intermediate tilt images. By interpolating between tilt series projections, cryoTIGER improves angular sampling, leading to enhanced 3D reconstructions, more refined particle localization, and improved segmentation of cellular structures. We evaluated our interpolation workflow on diverse datasets and compared its performance against non-interpolated data. Our results demonstrate that deep learning-based interpolation improves image quality and structural recovery. The presented cryoTIGER framework offers a computational alternative to denser sampling during tilt series acquisition, paving the way for enhanced cryo-ET workflows and advancing structural biology research.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"1443"},"PeriodicalIF":5.1000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-08961-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cryo-electron tomography enables the visualization of macromolecular complexes within native cellular environments but is limited by incomplete angular sampling and the maximal electron dose that biological specimens can be exposed to. Here, we developed cryoTIGER (Tilt Interpolation Generator for Enhanced Reconstruction), a computational workflow leveraging deep learning-based frame interpolation to generate intermediate tilt images. By interpolating between tilt series projections, cryoTIGER improves angular sampling, leading to enhanced 3D reconstructions, more refined particle localization, and improved segmentation of cellular structures. We evaluated our interpolation workflow on diverse datasets and compared its performance against non-interpolated data. Our results demonstrate that deep learning-based interpolation improves image quality and structural recovery. The presented cryoTIGER framework offers a computational alternative to denser sampling during tilt series acquisition, paving the way for enhanced cryo-ET workflows and advancing structural biology research.

cryoTIGER:基于深度学习的倾斜插值生成器,用于增强低温电子断层扫描重建。
低温电子层析成像技术能够可视化原生细胞环境中的大分子复合物,但受到不完全角度取样和生物标本可暴露的最大电子剂量的限制。在这里,我们开发了cryoTIGER (Tilt Interpolation Generator for Enhanced Reconstruction),这是一个利用基于深度学习的帧插值来生成中间倾斜图像的计算工作流程。通过在倾斜序列投影之间进行插值,cryoTIGER改进了角度采样,从而增强了3D重建,更精细的粒子定位,并改进了细胞结构的分割。我们在不同的数据集上评估了我们的插值工作流程,并将其与非插值数据的性能进行了比较。我们的研究结果表明,基于深度学习的插值提高了图像质量和结构恢复。所提出的cryoTIGER框架在倾斜序列采集过程中提供了一种计算替代方案,为增强cryo-ET工作流程和推进结构生物学研究铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信