Sustainable solar-induced decontamination of waterborne pharmaceutical pollutants using a structurally engineered Ti3C2 MXene/Bi2MoO6/g-C3N4 S-scheme heterocatalyst with tri-component interfacial charge transfer.

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Dong-Eun Lee, Satyanarayana Moru, Wan-Kuen Jo, Surendar Tonda
{"title":"Sustainable solar-induced decontamination of waterborne pharmaceutical pollutants using a structurally engineered Ti<sub>3</sub>C<sub>2</sub> MXene/Bi<sub>2</sub>MoO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> S-scheme heterocatalyst with tri-component interfacial charge transfer.","authors":"Dong-Eun Lee, Satyanarayana Moru, Wan-Kuen Jo, Surendar Tonda","doi":"10.1016/j.envres.2025.123045","DOIUrl":null,"url":null,"abstract":"<p><p>The persistence of pharmaceutical pollutants in aquatic environments poses significant threats to ecosystems and public health, thereby necessitating the development of highly efficient photocatalysts for their removal. In this study, a novel 2D/2D/2D ternary heterostructure comprising Ti<sub>3</sub>C<sub>2</sub> MXene (TC), Bi<sub>2</sub>MoO<sub>6</sub> (BMO), and g-C<sub>3</sub>N<sub>4</sub> (CN) was rationally engineered to achieve superior solar-driven photodegradation of waterborne pharmaceutical contaminants. The optimized TC/BMO-15/CN hybrid exhibited outstanding degradation efficiencies of ∼100% for cefixime in 90 min and 99% for naproxen in just 30 min, significantly outperforming pristine CN, BMO, and the binary BMO-15/CN photocatalyst. Comprehensive structural, optical, and electrochemical characterizations revealed that the synergistic integration of TC as a conductive bridge-combined with the optimal BMO content and intimate interfacial coupling-enhanced light harvesting, facilitated efficient tri-component interfacial charge transfer, and prolonged charge carrier lifetimes. Mechanistic investigations using reactive species quenching, ESR spectroscopy, and in situ light-irradiated XPS confirmed the formation of an S-scheme heterojunction, which enables selective spatial retention of high-energy charge carriers for redox reactions. By uniting architectural synergy with S-scheme charge transfer, the system enhances charge dynamics and enables efficient mineralization of complex pharmaceutical pollutants. Furthermore, the TC/BMO-15/CN catalyst demonstrated excellent structural stability and maintained high degradation performance across various water matrices and multiple reusability cycles. This study offers valuable insights into heterointerface engineering and presents a strategic platform for designing high-performance photocatalysts for practical environmental remediation applications.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"123045"},"PeriodicalIF":7.7000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envres.2025.123045","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The persistence of pharmaceutical pollutants in aquatic environments poses significant threats to ecosystems and public health, thereby necessitating the development of highly efficient photocatalysts for their removal. In this study, a novel 2D/2D/2D ternary heterostructure comprising Ti3C2 MXene (TC), Bi2MoO6 (BMO), and g-C3N4 (CN) was rationally engineered to achieve superior solar-driven photodegradation of waterborne pharmaceutical contaminants. The optimized TC/BMO-15/CN hybrid exhibited outstanding degradation efficiencies of ∼100% for cefixime in 90 min and 99% for naproxen in just 30 min, significantly outperforming pristine CN, BMO, and the binary BMO-15/CN photocatalyst. Comprehensive structural, optical, and electrochemical characterizations revealed that the synergistic integration of TC as a conductive bridge-combined with the optimal BMO content and intimate interfacial coupling-enhanced light harvesting, facilitated efficient tri-component interfacial charge transfer, and prolonged charge carrier lifetimes. Mechanistic investigations using reactive species quenching, ESR spectroscopy, and in situ light-irradiated XPS confirmed the formation of an S-scheme heterojunction, which enables selective spatial retention of high-energy charge carriers for redox reactions. By uniting architectural synergy with S-scheme charge transfer, the system enhances charge dynamics and enables efficient mineralization of complex pharmaceutical pollutants. Furthermore, the TC/BMO-15/CN catalyst demonstrated excellent structural stability and maintained high degradation performance across various water matrices and multiple reusability cycles. This study offers valuable insights into heterointerface engineering and presents a strategic platform for designing high-performance photocatalysts for practical environmental remediation applications.

利用结构工程Ti3C2 MXene/Bi2MoO6/g-C3N4 S-scheme具有三组分界面电荷转移的异质催化剂可持续的太阳能净化水性药物污染物。
水生环境中药物污染物的持续存在对生态系统和公众健康构成重大威胁,因此需要开发高效的光催化剂来去除它们。在这项研究中,合理设计了一种由Ti3C2 MXene (TC), Bi2MoO6 (BMO)和g-C3N4 (CN)组成的新型2D/2D/2D三元异质结构,以实现优异的太阳能驱动光降解水性药物污染物。优化后的TC/BMO-15/CN杂化物对头孢克肟的降解效率在90分钟内达到100%,对萘普生的降解效率在30分钟内达到99%,明显优于原始CN、BMO和二元BMO-15/CN光催化剂。综合结构、光学和电化学表征表明,TC作为导电桥的协同集成-结合最佳BMO含量和密切的界面耦合-增强了光收集,促进了高效的三组分界面电荷转移,延长了电荷载流子寿命。利用反应态猝灭、ESR光谱和原位光照射XPS进行的机理研究证实了s型异质结的形成,这使得氧化还原反应中高能载流子的选择性空间保留成为可能。通过将建筑协同作用与s方案电荷转移结合起来,该系统增强了电荷动力学,并能够有效地矿化复杂的药物污染物。此外,TC/BMO-15/CN催化剂表现出优异的结构稳定性,并在不同的水基质和多次重复使用循环中保持较高的降解性能。该研究为异质界面工程提供了有价值的见解,并为设计用于实际环境修复应用的高性能光催化剂提供了战略平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信