DMF Etching-Free Pore-Making Synergy: Alkaline lignin-Derived Biochar for Non-Radical PMS Activation toward Efficient BPA Degradation.

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Ziqi Song, Yintao Shi, Hao Zhang, Bin Zhang, He Zhou, Dongsheng Xia
{"title":"DMF Etching-Free Pore-Making Synergy: Alkaline lignin-Derived Biochar for Non-Radical PMS Activation toward Efficient BPA Degradation.","authors":"Ziqi Song, Yintao Shi, Hao Zhang, Bin Zhang, He Zhou, Dongsheng Xia","doi":"10.1016/j.envres.2025.123026","DOIUrl":null,"url":null,"abstract":"<p><p>This study innovatively adopted N, N-dimethylformamide (DMF) as a non-residual porogen to synthesize porous biochar from renewable alkaline lignin, activating peroxymonosulfate (PMS) to degrade bisphenol A (BPA). DMF, in contrast to conventional metal porogens, eliminated the need for acid washing without the hazards of metal remnants and secondary pollution. Analysis revealed that DMF modification markedly boosted defect density (I<sub>D</sub>/I<sub>G</sub> = 1.0732), specific surface area (397 m<sup>2</sup>/g, marking a 2.17 times rise compared to the control group), and the C=O bond content on the surface (23.90%), cumulatively leading to a 38.4% surge in the rate of BPA degradation relative to the original system. This study first identifies a threshold dependence between the dosage of DMF and the formation of pores, enabling accurate regulation of catalytic efficiency via dosage optimization. The reaction was driven by the synergistic activation of PMS by defect sites and C=O groups, resulting in efficient degradation via a non-radical pathway (dominated by <sup>1</sup>O<sub>2</sub>/O<sub>2</sub><sup>•-</sup>). This technology simultaneously achieves controllable design of biochar pores and greening of the process, providing a new paradigm for the development of low-cost, environmentally compatible carbon catalytic materials.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"123026"},"PeriodicalIF":7.7000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envres.2025.123026","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study innovatively adopted N, N-dimethylformamide (DMF) as a non-residual porogen to synthesize porous biochar from renewable alkaline lignin, activating peroxymonosulfate (PMS) to degrade bisphenol A (BPA). DMF, in contrast to conventional metal porogens, eliminated the need for acid washing without the hazards of metal remnants and secondary pollution. Analysis revealed that DMF modification markedly boosted defect density (ID/IG = 1.0732), specific surface area (397 m2/g, marking a 2.17 times rise compared to the control group), and the C=O bond content on the surface (23.90%), cumulatively leading to a 38.4% surge in the rate of BPA degradation relative to the original system. This study first identifies a threshold dependence between the dosage of DMF and the formation of pores, enabling accurate regulation of catalytic efficiency via dosage optimization. The reaction was driven by the synergistic activation of PMS by defect sites and C=O groups, resulting in efficient degradation via a non-radical pathway (dominated by 1O2/O2•-). This technology simultaneously achieves controllable design of biochar pores and greening of the process, providing a new paradigm for the development of low-cost, environmentally compatible carbon catalytic materials.

DMF无蚀刻制孔协同作用:碱性木质素衍生的生物炭非自由基PMS活化对BPA的有效降解。
本研究创新性地采用N, N-二甲基甲酰胺(DMF)作为无残留破孔剂,以可再生碱性木质素为原料合成多孔生物炭,激活过氧单硫酸盐(PMS)降解双酚a (BPA)。与传统的金属多孔剂相比,DMF消除了酸洗的需要,而没有金属残留物和二次污染的危害。结果表明,DMF改性显著提高了双酚a的缺陷密度(ID/IG = 1.0732)、比表面积(397 m2/g,比对照组提高了2.17倍)和表面C=O键含量(23.90%),使双酚a的降解率比原体系提高了38.4%。本研究首先确定了DMF用量与孔隙形成之间的阈值依赖关系,从而可以通过用量优化来精确调节催化效率。该反应是由缺陷位点和C=O基团对PMS的协同活化驱动的,通过非自由基途径(以1O2/O2•-为主)进行有效降解。该技术同时实现了生物炭孔隙的可控设计和过程的绿色化,为开发低成本、环境相容的碳催化材料提供了新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信