Decoupling Bioactivity and Processability: RGD Click-Functionalized Coatings for a 3D-Printed PCL Scaffold.

IF 5.4 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Giulia Salsano, Carla Sardo, Angiola Guidone, Pierpaolo Coppola, Marina Sala, Maria Carmina Scala, Alessandra Soriente, Maria Grazia Raucci, Rita Patrizia Aquino, Giulia Auriemma
{"title":"Decoupling Bioactivity and Processability: RGD Click-Functionalized Coatings for a 3D-Printed PCL Scaffold.","authors":"Giulia Salsano, Carla Sardo, Angiola Guidone, Pierpaolo Coppola, Marina Sala, Maria Carmina Scala, Alessandra Soriente, Maria Grazia Raucci, Rita Patrizia Aquino, Giulia Auriemma","doi":"10.1021/acs.biomac.5c01691","DOIUrl":null,"url":null,"abstract":"<p><p>The development of functionalized scaffolds with enhanced bioactivity remains a key challenge in bone tissue engineering (BTE). Here, we present a modular strategy to functionalize the surface of 3D-printed poly(ε-caprolactone) (PCL) scaffolds using an RGD-functionalized PCL derivative. A three-step synthesis introduced maleimide groups along the PCL backbone, enabling covalent conjugation of a thiol-containing peptide. The resulting polymer (PCL-AE-L) was applied via dip-coating, preserving the scaffold architecture and mechanical integrity while ensuring homogeneous surface coverage. Subsequent bioconjugation with the thiol-modified RGD peptide to obtain PCL@RGD scaffolds imparts enhanced cell-adhesive properties. Each functionalization step was confirmed by NMR, FTIR, DSC, GPC, and SEM-EDX analyses. Coating stability was demonstrated under simulated culture conditions. In vitro assays using SAOS-2 cells showed improved cell adhesion and mineralization of PCL@RGD compared to controls. This approach decouples bioactivity enhancement from the printing process and enables customizable surface functionalization, offering a versatile platform for developing next-generation scaffolds for regenerative medicine.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c01691","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of functionalized scaffolds with enhanced bioactivity remains a key challenge in bone tissue engineering (BTE). Here, we present a modular strategy to functionalize the surface of 3D-printed poly(ε-caprolactone) (PCL) scaffolds using an RGD-functionalized PCL derivative. A three-step synthesis introduced maleimide groups along the PCL backbone, enabling covalent conjugation of a thiol-containing peptide. The resulting polymer (PCL-AE-L) was applied via dip-coating, preserving the scaffold architecture and mechanical integrity while ensuring homogeneous surface coverage. Subsequent bioconjugation with the thiol-modified RGD peptide to obtain PCL@RGD scaffolds imparts enhanced cell-adhesive properties. Each functionalization step was confirmed by NMR, FTIR, DSC, GPC, and SEM-EDX analyses. Coating stability was demonstrated under simulated culture conditions. In vitro assays using SAOS-2 cells showed improved cell adhesion and mineralization of PCL@RGD compared to controls. This approach decouples bioactivity enhancement from the printing process and enables customizable surface functionalization, offering a versatile platform for developing next-generation scaffolds for regenerative medicine.

解耦生物活性和可加工性:3d打印PCL支架的RGD点击功能化涂层。
开发具有增强生物活性的功能化支架仍然是骨组织工程(BTE)的关键挑战。在这里,我们提出了一种模块化策略,使用rgd功能化的PCL衍生物来功能化3d打印的聚(ε-己内酯)(PCL)支架的表面。三步合成在PCL骨架上引入马来酰亚胺基团,使含硫醇肽的共价偶联成为可能。所得聚合物(PCL-AE-L)通过浸渍涂层应用,在确保均匀表面覆盖的同时保留了支架结构和机械完整性。随后与巯基修饰的RGD肽进行生物偶联以获得PCL@RGD支架,增强了细胞粘附性能。每个功能化步骤通过NMR, FTIR, DSC, GPC和SEM-EDX分析证实。在模拟培养条件下,验证了涂层的稳定性。使用SAOS-2细胞进行的体外实验显示,与对照组相比,细胞粘附和PCL@RGD矿化有所改善。这种方法将生物活性增强与打印过程分离,并实现可定制的表面功能化,为开发下一代再生医学支架提供了一个多功能平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信