Luca Donati, Surahit Chewle, Dominik St Pierre, Vijay Natarajan, Marcus Weber
{"title":"Topological Analysis Reveals Multiple Pathways in Molecular Dynamics.","authors":"Luca Donati, Surahit Chewle, Dominik St Pierre, Vijay Natarajan, Marcus Weber","doi":"10.1021/acs.jctc.5c00819","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular Dynamics simulations are indispensable tools for comprehending the dynamic behavior of biomolecules, yet extracting meaningful molecular pathways from these simulations remains challenging due to the vast amount of high dimensional data. In this work, we present Molecular Kinetics via Topology (MoKiTo), a novel approach that combines the ISOKANN algorithm to determine the membership function of a molecular system with a topological analysis tool inspired by the Mapper algorithm. Our strategy efficiently identifies and characterizes distinct molecular pathways, enabling the detection and visualization of critical conformational transitions and rare events. This method offers deeper insights into molecular mechanisms, facilitating the design of targeted interventions in drug discovery and protein engineering.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00819","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular Dynamics simulations are indispensable tools for comprehending the dynamic behavior of biomolecules, yet extracting meaningful molecular pathways from these simulations remains challenging due to the vast amount of high dimensional data. In this work, we present Molecular Kinetics via Topology (MoKiTo), a novel approach that combines the ISOKANN algorithm to determine the membership function of a molecular system with a topological analysis tool inspired by the Mapper algorithm. Our strategy efficiently identifies and characterizes distinct molecular pathways, enabling the detection and visualization of critical conformational transitions and rare events. This method offers deeper insights into molecular mechanisms, facilitating the design of targeted interventions in drug discovery and protein engineering.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.