Closed-form analysis of the global–local buckling behavior of sandwich columns with additively manufactured lattice cores

IF 2.5 3区 工程技术 Q2 MECHANICS
Serhat Osmanoglu, Akshay Nair, C. Mittelstedt
{"title":"Closed-form analysis of the global–local buckling behavior of sandwich columns with additively manufactured lattice cores","authors":"Serhat Osmanoglu,&nbsp;Akshay Nair,&nbsp;C. Mittelstedt","doi":"10.1007/s00419-025-02950-0","DOIUrl":null,"url":null,"abstract":"<p>This study provides a comprehensive analysis of the global (in-plane and out-of-plane) and local (intracell and wrinkling) buckling behavior of sandwich columns with monolithically designed aluminum facesheets and face-centered body-centered cubic (FBCC) lattice cores. Approximate and numerical methods are employed to evaluate the influence of geometric parameters on buckling performance. A novel closed-form, higher-order approach is developed, incorporating core transverse compressibility and a refined displacement field. The finite element method (FEM) is employed to verify the approximate results for sandwich columns under various boundary conditions, using 3D solid elements for the facesheets and beam elements for the lattice core. The results demonstrate strong agreement with the closed-form approximate predictions, capturing both global and local buckling modes while revealing that the boundary conditions significantly affect global buckling but have a rather small influence on the local buckling behavior. The proposed approach offers enhanced accuracy and convergence with numerical methods, providing an efficient framework to analyze wrinkling failure modes in sandwich columns with lattice cores.</p>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"95 10","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00419-025-02950-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-025-02950-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study provides a comprehensive analysis of the global (in-plane and out-of-plane) and local (intracell and wrinkling) buckling behavior of sandwich columns with monolithically designed aluminum facesheets and face-centered body-centered cubic (FBCC) lattice cores. Approximate and numerical methods are employed to evaluate the influence of geometric parameters on buckling performance. A novel closed-form, higher-order approach is developed, incorporating core transverse compressibility and a refined displacement field. The finite element method (FEM) is employed to verify the approximate results for sandwich columns under various boundary conditions, using 3D solid elements for the facesheets and beam elements for the lattice core. The results demonstrate strong agreement with the closed-form approximate predictions, capturing both global and local buckling modes while revealing that the boundary conditions significantly affect global buckling but have a rather small influence on the local buckling behavior. The proposed approach offers enhanced accuracy and convergence with numerical methods, providing an efficient framework to analyze wrinkling failure modes in sandwich columns with lattice cores.

加制格芯夹层柱整体-局部屈曲行为的封闭分析
本研究全面分析了整体设计的铝面板和面心体心立方(FBCC)晶格芯夹层柱的整体(面内和面外)和局部(胞内和起皱)屈曲行为。采用近似法和数值法研究了几何参数对屈曲性能的影响。提出了一种新的封闭的高阶方法,将岩心横向压缩率和精细位移场结合起来。采用三维实体单元作为面板单元,梁单元作为格芯单元,对夹层柱在不同边界条件下的近似结果进行了有限元验证。结果表明,边界条件对整体屈曲有显著的影响,但对局部屈曲行为的影响很小,与封闭形式的近似预测非常吻合。该方法与数值方法相比具有更高的精度和收敛性,为分析格芯夹层柱的起皱破坏模式提供了一个有效的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
10.70%
发文量
234
审稿时长
4-8 weeks
期刊介绍: Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信