Higher-order categorical coherence breakdown: a geometric framework for nonlinear quantum mechanics and its applications to strongly correlated electron systems

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Andrei T. Patrascu
{"title":"Higher-order categorical coherence breakdown: a geometric framework for nonlinear quantum mechanics and its applications to strongly correlated electron systems","authors":"Andrei T. Patrascu","doi":"10.1140/epjb/s10051-025-01062-6","DOIUrl":null,"url":null,"abstract":"<p>We introduce a higher quantum mechanics whose fundamental structure arises from the breakdown of categorical coherence beyond the first order. In our formulation, standard quantum mechanics itself emerges from first-order categorical coherence breakdown, corresponding to the familiar non-commutativity of observables and described geometrically by the Uhlmann gauge connection on the purification bundle. By promoting this to a higher categorical and higher gauge framework, we show that breakdown at higher coherence levels corresponds to the emergence of higher Uhlmann curvatures-geometric obstruction classes whose state-dependent structure induces intrinsic nonlinearities in the quantum equations of motion. We provide a concrete categorical model based on a 2-category of contexts generated by projective-valued measures (PVMs) with coarse-grainings, construct the Uhlmann bundle-gerbe over the manifold of full-rank density operators, and compute its Deligne class. A rigorous transgression functor from the path 2-groupoid of contexts to the holonomy 2-group of the gerbe yields curvature-weighted Magnus/Chen expansions, from which we derive explicit nonlinear correction functionals <span>\\(\\mathcal {N}_{j}[\\rho ]\\)</span> for æ =2,3. These nonlinear terms are the direct quantum-mechanical analog of interaction terms in gauge field theory, but arise here from multi-way measurement incompatibilities rather than external interactions. We argue that this higher-order geometric structure provides a natural theoretical framework for regimes where standard linear quantum mechanics is insufficient-particularly in quantum chemistry, multi-electron strongly correlated systems, and nonadiabatic dynamics at conical intersections. Applications are discussed for catalytic processes, chaotic electron dynamics, and materials with strong electron correlation, where our theory predicts experimentally testable deviations from linear quantum predictions.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 10","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-01062-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a higher quantum mechanics whose fundamental structure arises from the breakdown of categorical coherence beyond the first order. In our formulation, standard quantum mechanics itself emerges from first-order categorical coherence breakdown, corresponding to the familiar non-commutativity of observables and described geometrically by the Uhlmann gauge connection on the purification bundle. By promoting this to a higher categorical and higher gauge framework, we show that breakdown at higher coherence levels corresponds to the emergence of higher Uhlmann curvatures-geometric obstruction classes whose state-dependent structure induces intrinsic nonlinearities in the quantum equations of motion. We provide a concrete categorical model based on a 2-category of contexts generated by projective-valued measures (PVMs) with coarse-grainings, construct the Uhlmann bundle-gerbe over the manifold of full-rank density operators, and compute its Deligne class. A rigorous transgression functor from the path 2-groupoid of contexts to the holonomy 2-group of the gerbe yields curvature-weighted Magnus/Chen expansions, from which we derive explicit nonlinear correction functionals \(\mathcal {N}_{j}[\rho ]\) for æ =2,3. These nonlinear terms are the direct quantum-mechanical analog of interaction terms in gauge field theory, but arise here from multi-way measurement incompatibilities rather than external interactions. We argue that this higher-order geometric structure provides a natural theoretical framework for regimes where standard linear quantum mechanics is insufficient-particularly in quantum chemistry, multi-electron strongly correlated systems, and nonadiabatic dynamics at conical intersections. Applications are discussed for catalytic processes, chaotic electron dynamics, and materials with strong electron correlation, where our theory predicts experimentally testable deviations from linear quantum predictions.

Abstract Image

高阶范畴相干击穿:非线性量子力学的几何框架及其在强相关电子系统中的应用
我们引入了一个更高的量子力学,其基本结构源于一阶以上的范畴相干的分解。在我们的公式中,标准量子力学本身是从一阶范畴相干分解中产生的,对应于我们熟悉的可观测物的非交换性,并由净化束上的乌尔曼规范连接在几何上描述。通过将其推广到更高的分类和更高规范框架,我们表明,在更高相干水平上的击穿对应于更高乌尔曼曲率的出现-几何障碍类,其状态相关结构导致量子运动方程中的固有非线性。基于粗糙粒度的投影值测度(pvm)生成的2类上下文,给出了一个具体的分类模型,构造了全秩密度算子流形上的Uhlmann束gerbe,并计算了其Deligne类。从环境的路径2-类群到gerbe的完整2-类群的严格越界函子产生曲率加权Magnus/Chen展开,从中我们得到了显式非线性修正函数\(\mathcal {N}_{j}[\rho ]\)对于æ =2,3。这些非线性项是规范场理论中相互作用项的直接量子力学模拟,但在这里产生于多向测量不相容而不是外部相互作用。我们认为,这种高阶几何结构为标准线性量子力学不足的制度提供了一个自然的理论框架-特别是在量子化学,多电子强相关系统和锥形交叉点的非绝热动力学中。讨论了催化过程、混沌电子动力学和具有强电子相关性的材料的应用,在这些应用中,我们的理论预测了与线性量子预测的实验可测试偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信